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SUMMARY

The objective was to determine if a pressure release boundary condition can

be achieved by coating an elastic shell with a visco-elastic material. One necessary

condition is that the coating must acoustically decouple the shell from the

scattering problem. Two closed cell rubbers and two cork-rubber composites

(nitrile and neoprene based) were investigated. The dynamic viscoelastic constants

of the materials were determined by wave propagation techniques. The far field

scattering form functions for an infinite cylindrical shell coated with the viscoelastic

material were calculated using the complete elastic equations of motion. The form

functions were experimentally measured for the different materials at different

thicknesses as verification of the theory. A thick finite right cylindrical shell was

coated with .25 inches of closed cell neoprene and the normalized scattered

pressure measured. The pressure release normalized scattered pressure was

determined for the end on incident plane wave case using the acoustic radiation

Simplified Helmholtz Integral Program (SHIP). The pressure release normalized

scattered pressure was determined for the side incident case using a modified

Combined Helmholtz Integral Equation Formulation (CHIEF) radiation program.
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The material property measurements showed the closed cell rubbers have

longitudinal wave propagation speeds of approximately 150 m/sec and

attenuations of 30 dB/cm. The cork-rubber composites have longitudinal wave

speeds of approximately 300 m/sec and attenuations of 7 dB/cm.

The scattering measurements demonstrated that a thin shell (inner radius to

outer radius ratio of .97) could be made to scatter in a pressure release manner

with a .25 inches of nitrile. The rubber-cork composites could not produce the

pressure release effect for nondimensionalized wave number (product of the wave

number and the radius of the cylinder) values less than 4 with reasonable

thicknesses. The coated finite thick shell, with side incidence, scattered within 1

dB of the pressure release theory and completely eliminated the first

antisymmetric Lamb mode circumferential wave. For the end on case, the coating

significantly reduced the resonance effects and eliminated the scattered signal from

the back end of the shell.



1

CHAPTER I

I Introduction

Acoustic scattering from objects has been studied extensively since the days

of Lord Rayleigh. The most recent advances, which involve extensions of the basic

theory to more arbitrary shapes and mixed boundary conditions, can be directly

attributed to improved numerical techniques and the digital computer. There are

two fundamental, degenerate boundary conditions which may occur on the surface

of the scatterer. The first is the rigid surface or Neumann boundary condition

where the normal acoustic velocity of the surface is zero (i.e. the density and sound

speed of the scatterer -o ). The second is the pressure release surface or Dirichlet

boundary condition where the acoustic pressure is zero on the surface (i.e. the

density and sound speed of the scatterer -, 0 ). Reductions to these two degenerate

conditions are traditionally made when the specific acoustic impedance of the

scatterer is significantly greater than (for the rigid case) or less than (for the

pressure release case) the specific acoustic impedance of the surrounding medium.

The rigid body case (Neumann condition) and the pressure release case

(Dirichlet condition) have been extensively researched analytically for simple

shapes1 . The rigid body has also been the subject of extensive experimental inves-
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tigation. Since a perfectly rigid body does not really exist, this condition may be

considered a limiting form of the more precise problem of scattering from elastic

objects where the degree of elasticity is specified or to be determined. Elastic body

scattering is a current major research area and the review papers by Uberall 2,3 and

Nigul4 contain nearly one hundred references on this subject.

The pressure release surface (Dirichlet condition) has not received the

experimental attention of the rigid body case for two reasons:

1. This condition is not observed in air.

2. Until recently materials such as closed-cell rubbers and corprene which

approximate a pressure release surface in water have not been

commercially available.

The use of the closed-cell rubber as a decoupling material has provided a practical

application. Since the pressure release material is not structurally suitable as the

scattering body itself, it will be considered as a surface coating. The rigorous

theoretical approach to the coated scatterer is to apply the exact elasticity

equations to the structural material (with or without absorption) and to apply the

exact viscoelastic equations to the coating. The scattering problem is then solved

as a boundary value problem. If the coating were truly a pressure release material,

the elastic behavior of the structure could be neglected. This decoupling of the un-

derlying elastic structure from the fluid allows the scattered field to be determined

by treating the body as an impedance surface (using only the boundary conditions

at the exterior surface) and solving the exterior field problem using well
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documented techniques.

This thesis investigates the pressure release surface condition in detail. The

procedure to be followed is that suggested by Neubauer 5 . The backscattered

pressure field for a pressure release, finite cylinder is determined using the

modified Naval Ocean Systems Center (NOSC) CHIEF program for side incidence

(or normal incidence) at low frequency and the Naval Research Laboratory (NRL)

SHIP program for end on (axial) incidence. The backscattered pressure of a

coated finite cylinder is measured and compared with the theoretical pressure

release results. The theoretical prediction of the backscattered pressure for an

infinite coated cylinder using the experimentally determined material constants is

used for comparison with measurements on experimental models. Finite cylinder

data has compared well with infinite cylinder calculations when long cylinder are

used and the ends are either outside the main lobe of a piston type projector or the

length of the cylinder is greater than the length of the first Fresnel zone, i.e.

farfield of the cylinder, using a point source 6 . The overall objective is to determine

to what extent the pressure release condition can be approached, (i.e. for what fre-

quency range and for what thickness of coating material), with some commercially

available materials. Finally, the significant question of when the scattering field

can be determined treating the surface as a simple pressure release boundary or



the more complex elastic-viscoelastic solution must be use in order to achieve the

required accuracy is answered.

Background Review

Scattering From the Infinite Cylinder and Cylindrical Shell

The first solutions to plane wave scattering by an infinite cylinder were

developed by Lord Rayleigh 7 . He considered both rigid, immovable and nonrigid

cylinders with diameters small compared to the acoustic wavelength in the fluid

(ka< < 1 where k = w/c, a is the radius of the cylinder, w is the angular frequency,

and c is the speed of sound in the fluid). Rayleigh also outlined a method of

solution for larger diameter cylinders and spheres using an infinite series of cylin-

drical and spherical harmonics, respectively, which has become known as the

Rayleigh series. The solution method using the Rayleigh series is called the

normal mode solution method. Morse 8 demonstrates the normal mode solution

method for ka values up to 2.5. In 1951 Faran9 published a classical paper on the

exact solutions to scattering of plane waves from an infinite, homogeneous, isotrop-

ic cylinder capable of supporting both shear and compressional waves. His method

of solution was to solve the elastic equations of motion developed by Love 10 . The

three dimensional equation of motion in vector form is
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2u

(X + 2p)V(V.U) uVx(Vxu) - p a U
at2

where U is the displacement , A and g are Lame constants (pu is the shear modulus

and X + 2t is the plane wave or longitudinal modulus) and t is the time. Using the

Helmholtz theorem the displacement is written as the sum of a vector potential

and a scalar potential.

U - -V# + V x A (1-2)

Faran experimentally showed that the rigid, immovable cylinder was a valid

approximation provided: 1. the frequency was less than that of the first normal

mode of free vibration of the cylinder and 2. the density of the scatterer is signifi-

cantly greater than the density of the surrounding fluid. As the density difference

between the scatterer and the fluid becomes smaller, the rigid, immovable

approximation should be replaced by the rigid but movable case, and eventually by

the totally elastic case as the density difference decreases further. He was also the

first to experimentally observe resonances or large amplitude changes in the

scattered field when the incident frequency approaches the characteristic

frequencies of the scatterer.

Normal mode calculations were soon applied to higher ka values with

excellent experimental confirmation for elastic spheres and spherical shells 11" 16 .

Hickling 11 was the first to utilize the digital computer for ka values less than 20
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and found convergence of the harmonic series to be extremely slow as ka

increased. He also formulated the result in terms of a far field form function, f",

which normalizes the scattered pressure, Ps(O), to the incident pressure, Po, radius

of the scatterer, a, and the distance to the field point from the acoustical center of

the scatterer, R in such a manner so as to be equal to 1.0 for the rigid body case.

The cylindrical far field form function is

2R PS
,0 a P (1-2)

Neubauer et al. 15 demonstrated the first quantitative agreement between normal

mode theory and experimental results for solid elastic spheres. Dragonette et al. 16

demonstrated that good quantitative results could be obtained using short

broadband pulses and analyzing the frequency content of the scattered signal.

Experimental verification of the normal mode solution method for the infinite

cylinder (using a finite cylinder) was obtained by Dardy et al. 17 .

Due to differences in the scattered fields, it is necessary to differentiate

between scattering from cylindrical shells and scattering from solid cylinders.

Barnard 18 observed numerous periodic echoes for an incident pulse on solid and

hollow brass cylinder which suggests additional wave contributions besides the

purely specular reflection. The hollow cylinder (shell) was also observed to scatter

differently than the solid cylinder. Subsequent authors19,20,21 proposed the exis-
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tence of two types of circumferential waves for the solid cylinder. The two types of

waves are: 1. Franz waves which are analogous to the geometrically diffracted cir-

cumferential waves discovered by Franz2 2 while investigating diffraction of elec-

tromagnetic waves by perfectly conducting spheres and cylinders. 2. Rayleigh type

(or R type) waves which are surface waves which depend on the elastic properties

of the scatterer. Neubauer 23 gives an excellent review of the literature and theory

of circumferential waves which is briefly summarized below.

The two wave types generated by the solid cylinder resulted from the

observation that one wave, the Franz wave or geometrical wave, had a wave speed

below the propagation speed of the fluid and the other wave, Rayleigh type waves,

had a wave speed significantly above the sound speed of the fluid medium.

Neubauer 2 4 and Harbolt and Steinberg2 5 experimentally verified the presence of

the geometrical or Franz waves. Theoretical evidence for the Rayleigh type waves

was developed by Grace and Goodman 2 6 with experimental verification by

Bunney et al. 27 and Neubauer 2 8 . Figure 1-1 illustrates the the specular reflection

(backscattered) contacting the cylinder at point A and returning. Also illustrated

are two Franz waves originating at points B and C and traveling in the fluid around

the back of the cylinder. The Rayleigh type waves travel paths similar to the Franz

waves but exist in the solid cylinder not in the fluid.

Although the normal mode solution method leads to the correct scattered

pressure verses frequency result, the series converges very slowly and becomes

computationally impractical for ka values greater than 20. Another drawback of
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this method is that it does not easily isolate the individual mechanisms, i.e. the

specular and circumferential waves, contributing to the scattered pressure field.

Uberall et al. 2 9 has demonstrated the relationship between circumferential or

creeping waves and the normal modes, but unfortunately the relationship is not

straight forward. The current method to extract the individual wave type

contributions is the Sommerfeld-Watson transformation of the normal mode

series. This transform maps the normal mode series into the complex plane in the

form of a contour integral. Two groups of poles are observed which yield the two

types of circumferential waves. The Sommerfeld-Watson transformation has been

extensively used. It converges rapidly and its results agree well with

experiment 30 ,31,32.

Some insight into the two types of creeping waves may be garnered from

consideration of wave propagation along an infinite plane interface between two

different isotropic media. (Uberall 2 contains an indepth review of circumferential

wave.) If one of the media is a vacuum and the other an elastic solid, Rayleigh 3 3

showed that an inhomgeneous surface wave results which exponentially decays

normal to the surface and propagates along the surface. This wave, the classical

Rayleigh wave, is a combination compressive-shear type wave which propagates

with a unique velocity, CR, along the surface. The Rayleigh wave speed varies

from 0.86 to 0.96 of the shear wave speed in the elastic media as Poisson's ratio

varies from 0 to .5. No waves exist in the vacuum. Love3 4 and Stoneley 3 5

extended the analysis to liquid-solid and solid-solid interfaces. The surface waves
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generated in these situations are often called generalized Rayleigh waves.

Generalized Rayleigh waves differ from the ideal Rayleigh wave in that the gener-

alized Rayleigh wave exist in both media and are exponentially damped in the di-

rection of propagation (nonpropagating waves). The generalized Rayleigh wave

also decays exponentially in the normal direction from the surface in both media.

The existence of the wave in the second media results from the seepage of energy

from the first media which causes the wave to be nonpropagating along the surface.

(The seepage of energy has resulted in the generalized Rayleigh wave being re-

ferred to as the Leaky Rayleigh wave.) In addition for the generalized Rayleigh

waves, new modes of the surface wave exist. The dispersion equation is

2 2
T  CT  C T  C T  2C T

cc, C 2 C2 C 2 + 2 ,

L

1 I

2 
c2

PSF I L1 (1-4)

C2 C2
F

where CL is the longitudinal wave speed, CT is the transverse wave speed and P. is

the density of the elastic solid, CF is the propagation speed and PF is the density of

the liquid (fluid) and C is the generalized Rayleigh wave speed to be determined.

Equation (1-4) has one real root and the remaining roots are complex. As PF - 0,
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there is one complex root whose real part approaches the Rayleigh wave speed,

CR. (The fact that the roots are complex implies that the wave is attenuating in

the propagation direction.) The real root indicates a propagating surface wave

which travels mainly in the liquid. The wave is still attenuating normal to the

surface. The phase speed of the propagating surface wave is less than the

propagation speed of the liquid (see Viktorov3 6 for detailed derivation of the roots

of equation (1-4)). This wave is generally referred to as the Stoneley wave.

Uberall, et al.3 0 demonstrates the Watson-Sommerfield transform for the pressure

release cylinder in a fluid. The transform yields poles which correspond to the

propagation phase speeds less than the propagation speed of the fluid. These poles

represent the different modes of the geometric or Franz waves. Uberall, et al. also

shows that the first Franz wave for the pressure release cylinder is significantly

more attenuated than the corresponding first Franz wave of the rigid cylinder.

This attenuation explains why the pressure release backscatter form function does

not show the classical form function structure associated with the infinite rigid cyl-

inder. The analogy is that the superposition of the Franz modes result in the

unique flat plate Stoneley wave. The attenuation of the Franz wave is a curvature

effect caused by the tangential radiation of energy into the fluid for each mode.

Neubauer 2 3 demonstrates the Watson-Sommerfield transform for a solid alumi-

num cylinder. The transform produces two sets of poles referred to as Franz type

and R type (Rayleigh type) poles. The R type poles result in dispersive wave

propagating at phase speeds greater than the propagation speed of the fluid. Frisk



12

and Uberal13 7 related the first R type pole, R1 , to the generalized Rayleigh wave

since its phase speed approaches the Rayleigh wave speed, CR, as ka-i. The other

R type poles are called "whispering gallery" waves and become lateral waves as

ka-m.

As stated above, the R-type waves are not present for the pressure release and

rigid cases. When an incidcnt pulse is used, Neubauer 23 shows the Franz wave

and the specular reflection can be time separated with

At 2a + %a (1-5)
C CF
w p

where CF is the phase speed of the Franz wave and Cw is the propagation speed

of the water. As illustrated in figure 1-1, the first term of equation (1-5)

corresponds to time to travel twice the distance d1 in the fluid and the second term

of equation (1-5) is the time to travel half of the circumference of the cylinder at

the phase speed of the Franz wave. Due to attenuation, only the first Franz wave

is of significance (see Neubauer 24 ). It is also possible to recover the Franz wave

by decomposing the scattered pulse into a specular reflection and a creeping wave

using the assumption that the specular reflection has the same frequency content as

the incident pulse. This technique is illustrated by Rudgers38 for a rigid sphere.

Another possible contributor to the scattered field is multiple internal

reflections of the shear wave. Neubauer and Dragonette 3 9 demonstrated the

significance of these multiple reflections. Brill and Uberal14 0 also provided
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theoretical support for the shear wave reflections.

In order to understand the scattered field of the cylindrical shell, the relation

between the circumferential waves in the shell and the scattering form function

must be developed. From the form function versus ka graph for the cylindrical

shell, three well defined background regions are apparent. In region 1 or soft

background region (small ka values), the specular reflection is inverted relative to

the incident signal and the resonances appear as dips (decreases) in the form

function on the form function verses ka graph. The second region or transition

region occurs when the resonances appear as both dips and peaks on the form

function verses ka graph. In the third or rigid background region, the specular

reflection is in phase with the incident signal and the resonances appear as peaks

on the form function verses ka graph. For the shell, Neubauer 2 3 states that the

Franz waves do not measurably affect the form function. The R type waves are not

present since they require a semi-infinite medium (e.g. the thickness of the shell is

usually less than a wavelength and can not support the R type waves). Horton, et

al.4 1 made the first attempt to relate motion of the shell to plate theory. Diercks,

et al. 19, established the existence of two groups of circumferential waves in shells

with different group velocities. They were referred to as longitudinal and flexural

waves where the group speed of the longitudinal waves is greater than the group

speed of the flexural waves. Some confusion existed due to the variation in speeds

that were obtained for the fast (longitudinal) circumferential waves. Herrmann

and Mirsky42 determined that shell analysis can be divided into two methods. For
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very thin shells, the motion is dominated by membrane and curvature effect,

therefore membrane theory is used. For thicker shells, the motion is dominated by

flexural, rotatory inertia, and shear-deformation effects, therefore plate theories

are used. For wavelengths less than At, the membrane theory is used.

2 22A -Rh 2 r (1-6)

t 3(1 - 2)2

where R is the mean radius, h is the shell thickness and v is poisson's ratio. For the

experiments to be conducted in this investigation, the shell is of sufficient thickness

to require plate theories. The two circumferential groups of waves observed by

Diercks, et al. 19 correspond to symmetric Lamb modes (longitudinal) and

antisymmetric Lamb modes for infinite plates (wheresymmetry is defined relative

to the axis located in the center of the plate, parallel to the surface). In order for

either of the modes to be to be excited, the phases speed of the mode must be

greater then the propagation speed of the fluid (water). The angle at which the

mode is excited is determined from

sin($i) waV where V is the phase speed of the mode.p p

It is possible to generate the first symmetric mode for all frequency thickness (fh

shell thickness x frequency) values in water. For a complete analysis, including

dispersion curves, of mode generation in steel (ratio of longitudinal to shear speeds



equal to 1.8), see Grigsby and Tajchman4 3 . Viktorov36 shows the first symmetric

Lamb mode phase, Vs,, and group, Vs,g, speeds vary from

Vs(p.g) p( ) (1-7)

to the Rayleigh wave speed, CR, as fh varies from 0 to D. The first antisymmetric

mode phase speed, Va p, varies as

E 2h (I-8)
a,p 3p(-v) 2

(approaches 0 as fh--D) and approaches the Rayleigh wave speed, CR, as fh--w. The

first antisymmetric mode group speed is equal to twice Vap and also approaches

the Rayleigh wave speed, CR, as fh-u*. As the frequency thickness increases,

additional modes of the symmetric and antisyrmmetric Lamb waves become excit-

ed. The cutoff frequencies of the symmetric modes are given by the plate thickness

corresponding to one half wavelength intervals of the longitudinal wave and whole

wavelength intervals of the transverse wave. The cutoff frequencies of the

antisymmetric modes are given by the plate thickness responding to one half

wavelength intervals of the transverse wave and whole wavelength intervals of the

longitudinal wave. The higher modes approach the transverse wave speed of the

material as the frequency thickness tends to infinity. Viktorov3 6 states the
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asymptotic forms of the phase speed for the symmetric and antisymmetric modes of

order n as

V " CT (1 + 2 2n] )

Vap CT I + (2n "- ) 2 2 I

where D = (wh)/(2CT).

The significant observations (discussed in Neubauer 2 3 ) from the plate theory

predictions are:

1. for thin shells, the first symmetric Lamb mode dominates in the low ka

region and will cause significant dips in the form function verses ka graph at

intervals of Aka = 3.7. These dips result from the addition of the specular

reflection, which is 180 degrees out of phase from the incident signal, and the first

symmetric mode circumferential wave (at the frequency where the wavelength of

the circumferential wave corresponds to an integer multiple of the circumference

of the cylinder), which is in phase with the incident signal, producing a cancelling

effect in the overall scattered signal. As the shell thickness increases, the dips

become less pronounced and additional symmetric modes may become excited.

The excitation of additional modes explains the early confusion in the literature

involving the phase speed of the fast circumferential waves.
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2. the first antisymmetric mode is usually not excited in thin shells until larger

ka values (for aluminum and an inner to outer radius ratio of .98, the first

antisymmetric mode is not excited until a ka of approximately 55). As the shell

thickness increases, the frequency required for excitation of the first antisymmetric

mode decreases (same fb value). (Neubauer shows that for an aluminum shell with

an inner to outer radius of .9, the antisymmetric mode is observed at a ka= 10.)

The antisymmetric mode circumferential waves cause resonance peaks in the form

function versus ka graph. The peaks occur because the shell is scattering in a rigid

manner since the specular reflection is in phase with the incident signal and the

antisymmetric wave, which is an elastic wave, is also in phase with the incident

signal. When the wavelength of the antisymmetric mode is the correct value to

allow exact phase matching, the antisTmetric mode circumferential wave and the

specular reflection add to cause a resonance peak.

An alternate method of determining the scattered field is to assume a series

solution in form of inverse integer powers of ka. This method, called the

Luneberg-Kline method44 , is adapted from optical theory. The scattered pressure

is

Ps(r) - exp(Lk)Z. (1-10)

n=O

Since only integer powers are considered, the circumferential waves are neglected.
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Due to the difficulty in determining Vn(r), only the first two terms are retained, i.e.

n=2. Keller et al.4 5 applies this method to the pressure release, rigid and

impedance boundary conditions. George and Uberal14 6 compare the Luneberg-

Kline method with the Kirchhoff method for complex impedance surfaces and

concluded that the Luneberg-Kline method gives a more accurate measure of the

scattered field.

In the previous references with the exception of the approximate methods,

absorption by the scatterer has been neglected. Schuetz and Neubauer 4 7

demonstrated that there is significant error in the scattered field if absorption is

neglected. Scattering of sound from sound absorbing surfaces has been

investigated experimentally4 8 -5 2 and theoretically by using approximate shell

theories 53 , by assigning a complex impedance boundary condition on the surface of

the scatterer 5 4 "5 6 and through the assignment of a viscosity throughout the body of

the scatter 57 ,5 8 . Since the scatterer to be studied is not homogeneous in the radial

direction, i.e. layered, the approach by Gaunaurd 5 7 and Flax et al.5 8 is most accu-

rate. This approach solves the exact elasticity equation for the elastic cylinder

coupled with the exact viscoelastic equation (plane strain case) for the absorptive

layer. Gaunaurd 5 9 also solves the layer problem using the Sommerfeld-Watson

transform method. The overall result is that the scatterer demonstrates both

pressure release and rigid-like behaviors at different ka values. After these

characteristic behaviors, resonance effects are observed. Gaunaurd's 5 7 material

properties do not correspond to any known materials, so there can be no experi-
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mental verification of his results. Flax and Nuebauer 58 solved the same problem

as Gaunaurd with a lucite coating but, again, there is no experimental verification.

Numerical Methods

There are a number of methods which can be used to determine the acoustic

field scattered from a surface. It is often convenient to reformulate the scattered

problem as a radiation problem. Chertock6 0 proved this can be done with no loss

of generality. Since most of these methods have been derived for the radiation

problem, i.e. a vibrating surface in an infinite medium, this literature review %ill be

based on this reformulation.

The radiation problem is conventionally posed as follows (see figure 1-2).

An arbitrarily shaped finite object with a total surface area S, is contained in an

infinite, ideal, homogeneous fluid. The density of the fluid, p, and the speed of

sound, c, in the fluid are known. The region outside the surface is designated Ro

and the interior region is designated Ri . An arbitrary point in Ro is designated x

and an arbitrary point in Ri is designated xi. Points on the surface S are designated

xs. The positive unit normal vector n is directed from a point on S into R o . Only

the steady state condition will be considered which implies the pressure and

velocity are harmonic functions. The harmonic time dependence will be

suppressed in this review. The boundary value problem requires that the pressure,

p(x), satisfy the Helmholtz equation for all x in R o.
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Figure 1-2 General scattering Geometry for Numerical Methods



__ ....-- - F. -

21

(V2 + k2)p(x) = 0 (1-11)

The surface boundary condition is obtained from the normal component of

Euler's equation

ap = -w ( s .( -2
=-n- 
= n • (Vp(x)) x -LP V(x ). (1-12)

S

The pressure is also required to satisfy the Sommerfield radiation condition at

infinity

limit r r -kp(x) 0. (1-13)
ra 

I.e

The most straightforward method is to solve the wave equation directly using

the classical method of separation of variables. This method, however, can be used

only when the vibrating surface conforms to a separable coordinate system. (See

Morse and Feshbach61 for examples.) The normal mode method (Rayleigh series)

for scattering works for those special cases when separable coordinate systems are

usable for the radiation problem. A disadvantage of the normal mode method is

that the calculation of the solution functions is not trivial nor always

straightforward. Approximate solutions to the wave equation have been developed

but these are extremely situation dependent with little generalization.
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Due to the difficulty is solving the wave equation directly, alternate integral

methods have been developed. During the 1960's four integral equation methods

came into prominence. The first is the simple source formulation which has its

origins in classical potential theory. The basic premise is that the pressure

(potential) field can be represented by the integral over the surface of a simple

source density function, a(xs), times the free space Green's function. It is assumed

that a(xs) is originally unknown.

p(x) -JJp U(X) e k dS(x) (1-14)

The integrand of the above integral is singular as x approaches the surface but

Kellogg 6 2 showed that the limit of the integral does exist and is continuous. The

normal derivative of the integral is not continuous at the surface and must be

accounted for. If the surface boundary condition is applied to an arbitrary point xs

on the surface, equation (9) becomes

v(xs) - 2w(x) + [ (x) e dS(xs) (1-15)
s Jsjjs an I

where the integral is an improper integral. Chen and Schweikert6 3 demonstrated a

method of subdividing the surface into N triangular elements and assuming o(x s ) is

constant over the each element. This formulation allows the integral to be written
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in terms of N linear algebraic equations. Chen and Schweikert and Baron et al.6 4

work several examples of this method for vibration of the acoustic medium and for

vibration of elastic solids and shells in contact with the medium.

The remaining three methods are based on the Helmholtz Integral Method

(HIM). The Helmholtz Integral determines the pressure at an external field point,

x, in terms of the surface pressure, p(xs), and the normal surface velocity, v(xs).

4w p(x) p(xs) a g(x,x) - t V(Xs ) g(XX) dS(x)

kr(x, SS)

where g(x,x ) = (1-16)
s r(x,x S )

The normal surface velocity and surface pressure are related by two integral

equations called the Surface Helmholtz Integral Equation (SHIE) and the Interior

Helmholtz Integral Equation (IHIE). A complete discussion of the HIM may be

found in Baker and Copson6 5 . Chertock 66 points out a low and high frequency ap-

proximate relation between the surface presc-re and surface velocity. In the low

frequency limit the in phase component of the surface pressure is considered

negligible and
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P(xs) L V(X S) m(x S) (1-17)

where L V(Xs) is the local acceleration and m(xs) is the entrained mass per unit

area. For low frequencies, m(xs) varies slowly and is calculated from incompress-

ible flow theory. For the high frequency case, the surface is approximated as a

sphere of radius a, where a is the local mean radius of curvature of the surface.

P(Xs) = Pc v(x) [1 ](1
s " -a)( -8

This approximation is usually valid for ka> > 1. A derivation and additional

restrictions for this approximation can be found is Morse 6 7.

In the 1930's Kupradze 6 8 developed what has become known as the Surface

Helmholtz Integral Equation. To develop this equation, the point x in R o is

allowed to approach the surface S. The results in the folloxking two dimensional

inhomogeneous Fredholm equation of the second kind

p(x) p(X) g(x,xs) -LWp V(X) g(X'X dS(xs)
ss an(x) s s 's'

etkr(x,Xs)
where g(x,xs) = r(XXs)  (1-19)

s r(x,x ) (-9

The actual method of solution, i.e. Surface Helmholtz Integral Equation Method
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(SHIEM), is to solve the surface Helmholtz integral equation for the surface

pressure given the surface velocity. Then utilizing the surface pressure and surface

velocity, the HI is solved for the field pressure. Chertock demonstrates a method

of solution for surfaces of revolution and reduces equation (1-19) to one-dimen-

sional form. Banaugh and Goldsmith6 9 describe a related approach for two-di-

mensional problems.

The third method pioneered by Copley70 has become known as the Interior

Helmholtz Integral Equation Method (IHIEM). It is developed by defining the

pressure interior to the surface, region Ri, as zero for all xi resulting in

P(x) a g(xi.Xs) Lwp V(Xs) g(xiX) dS(x)
0 s nxS)

(1-20)

This equation, the interior Helmholtz integral equation, defines an acoustic rela-

tion between the surface pressure and the normal surface velocity which then

allows usage of the exterior Helmhotz Integral (HI) to determine the exterior field

pressure.

The three previous methods have significant difficulties which are described in

detail by Schenck7 1 . In summary, the simple source formulation does not always

exist and the surface Helmholtz Integral equation (SHIE) does not have unique

solutions at or near certain characteristics frequencies or wave numbers (these are

eigenvalues of the interior Dirichlet or Neumann problem). Schenck determines
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additional compatibility relations which must be satisfied for the SHIE to yield a

unique solution for all frequencies. The Interior Helmholtz Integral Equation

Method, IHIEM, is unique in principle but exhibits numerical computational

problems.

To facilitate usage of the first two methods, knowledge of the characteristic

frequencies is required so they can be avoided. This requires solving the interior

eigenvalue problem first. Since numerical approximations are involved in

discretizing the integrals, a range of values for each characteristic frequency is

required. The numerical approximation effect becomes increasingly more

important at higher frequencies due to a reduction in the interval between the

characteristic wave number associated with the higher frequencies. The overall

result is that these methods are not generally satisfactory without additional

modifications or knowledge.

To eliminate the lack of uniqueness, Schenck 71 proposed the Combined

Helmholtz Integral Equation Formulation (CHIEF). Basically CHIEF discretizes

the surface Helmholtz integral equation into an N by N system of equations and

then overdetermines the system by forcing additional compatibility equations to be

satisfied. The additional compatibility equations are, in fact, the interior

Helmholtz integral equation applied at selected interior points. Meyer et al. 72

points out two difficulties with CHIEF: (1) there is no simple method to determine

how many additional interior compatibility equations are required to sufficiently

overdetermine the system thereby eliminating the nonunique solutions. (2) there is
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no scheme for choosing the appropriate interior points except to avoid obvious

symmetry points. Rogers73 develops a method to determine how many additional

interior points are required by using eigenvalue decomposition. Recently (August

1986) Benthein and Barach 7 4 and Naval Ocean Systems Center, San Diego

reissued CHIEF in a general program (fortran) format with modern memory

(storage) allocation procedures which allows rapid program runs with different

compatibility points so as to arrive at a "best" solution. This new version also

includes a point source check feature.

A variation of CHIEF has been proposed by Shaw7 5 . In this method

additional points are placed in the exterior region, R o, to overdetermine the

exterior Helmholtz integral equation. Unlike the interior problem, the potential

(pressure) at the additional field points is unknown and must be solved by itera-

tion.

One method of eliminating the uniqueness problem is to use a different

Green's Function. Ursell 7 6 provides a new function which involves the

computation of infinite series. The shortcomings of this method are primarily com-

puter related.

Burton7 7 points out that a modified differentiated form of the surface

Helmholtz Integral Equation (SHIE) also describes the surface pressure. It also

has nonunique solutions corresponding to internal eigenvalues of the associatedt
interior equation, but these are different from the eigenvalues of the previous

interior Helmholtz Integral Equation (IHIE). The differentiated form results from
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taking the normal gradient of the surface Helmholtz Integral Equation (SHIE).

This yields a Fredholm equation of the first kind.

a) PX) ] 2g(xx S) S gxx S(x

8n(x) 2x s an(x) an(x ) a n(x) s

(1-21)

The significant observation by Burton and Miller 7 8 was that combining the surface

Helmholtz Integral Equation (SHIE) and its differentiated form results in a

solution that is common to both equations. Since the eigenvalues are different for

each equation, the solution of the combined equation will be unique. This

combined equation is the starting point for Meyer et al.72 application to radiation.

The combined equation is

p(x) + a 8 p(x)
a n(x)

JsJ g(xi,x) LWP V(x) g(x.,x dS(x)W" P as n(Xs) V(Xs) 's s

a1 2 g(xXX) a g(x'xs)

+ ~x)s V(X) dS(x gx )+ a P(Xs an(x) an(xS) s an(x) s

(1-22)

where a is a coupling constant. Meyer et al. points out that the term

- -- -- - -- -- -
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P(xs) a g(xx ) dS(xs) (1-23)

JS s Bn(x) an(xs) s

is strongly singular and can not be numerically integrated. A method of overcoming

this problem is then presented. Terai79 has also treated the highly singular

integral by reducing it to a contour integral which is nonsingular for most

practically realizable surface elements. The selection of a is recommended to be

-t/k by both Reut8 0 and Meyer et al.

In an effort to evaluate which method to use, Tobocman 81 conducted a study,

of scattering from a rigid sphere in the intermediate wavelength region (i.e.

wavelength comparable to target dimensions) using both CHIEF and the Burton-

Miller method. The study was performed at four characteristic wave numbers

between 3 and 10. The conclusion is that CHIEF converges more rapidly than the

Burton-Miller method but at higher wave numbers, k> 10, CHIEF is more time

consuming and becomes impractically slow. In the frequency range of interest,

CHIEF out performed the Burton-Miller method both in time considerations and

accuracy. A surprising result is that at higher characteristic wave numbers, the

surface Helmholtz Integral Method (SHIEM) (without overdetermination) showed

an increase in accuracy and was on the order of the Burton-Miller method.

Therefore, if precise accuracy is not required at higher wave numbers, the SHIEM

will give rapid results. Since this was shown for the rigid sphere only, extension to

other geometries is cautioned.
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The Simplified-Helmholtz-lntegral Program (SHIP) developed by Rogers82

solves the Helmholtz Integral (using the SHIEM) specifically for finite circular

cylinders and free-flooded ring transducers. SHIP takes full advantage of the axial

symmetry which results in the high speed of this method relative to others. The

standard approach of the previously discussed methods is to solve the SHIE by

dividing the surface into small surface subdivisions and solving the surface

integrals. The axial symmetry allows: 1. the surface to be divided into bands (no

division in e direction) which reduces the number of elements. 2. the conversion of

the surface integrals into ordinary line integrals. For application to the scattering

problem, SHIP requires complete axial symmetry and is, therefore, only usable for

axial or end on incidence. SHIP is easily adaptable to the pressure release bounda-

ry condition.

The follow-on step to the overall scattering problem is to match the acoustic

radiation condition with the structure reaction or fluid-structure coupling. This is

accomplished by matching the normal surface velocity defined by the elastic equi-

librium relations with that defined by the equations of the fluid field (HI).

Mathews 8 3 developed a program called ADRAD which uses the finite element

technique for the structural material and the Burton-Miller method for the fluid.

He strongly recommends that CHIEF be avoided due to the previously mentioned

problems.
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Recently little has been done to improve the theoretical treatment of the

radiation problem although gains have been made in the numerical implementa-

tion of the integral equations. Schuster and Smith 84 and Seybert et al. 85 have

developed a more sophisticated boundary integral equation method of solution by

using elements that are curvilinear and by representing acoustic variables with

higher order interpolation functions in lieu of the planar elements and piecewise

constant acoustic variables. The result is greater accuracy for the same number of

elements, less computing time, but a more complicated formulation is required.

Waterman 86 developed an alternative method to the HIEM called the T-

Matrix method (TMM). In this method the potential field is expanded in terms of

the spherical wave functions which is then substituted into the Helmholtz equation.

The result is a set of linear algebraic equations for the expansion coefficients.

Tobocman 8 7 compares the two methods for a rigid prolate spheroid of various

aspect ratios. His conclusions are summarized as follows: (1) The TMM

converges more rapidly than the HIEM for spherical targets. (2) The rate of con-

vergence deteriorates very rapidly for the TMM with increasing aspect ratios but

the convergence of the HIEM shows little change. (3) The TMM was severely af-

fected by overflow and roundoff error. (4) As the number of partial waves is

increased in the TMM, the matrix which must be inverted becomes increasingly ill

conditioned which is exactly opposite from the HEM. Numrich et al. 88 has ex-

tended the TMM to finite cylinders using cylindrical basis functions. Additional

results and usages of the TMM may be found in Varadan and Varadan 8 9 .
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An alternative to the previously discussed methods is to utilize variational

formulations to solve the Helmholtz integral equation. Until the recent work by

Wu, et al.9 0 and Pierce 9 1 very little interest in this approach has occurred since the

1950's. Morse and Feshbach 61 contains a summary of this previous work. Wu, et

al., demonstrates a new approach of the variational principle to the Helmholtz

integral equation (i.e. formulation contains all self-adjoint kernels) to transversely

oscillating disks. Pierce derives a stationary expression for radiated acoustic power

and target strength. In addition, Pierce discusses some alternatives or tricks to

enhance the solution of the variational formulation but suggest additional study is

required for comparison with other computational algorithms.

CHIEF has proven to be reliable for the finite cylinder particularly since the

characteristic frequencies are well known. The particular advantages of the

Benthein and Barach CHIEF program 74 is that it is pre-programmed for numer-

ous coordinate systems which allows the program to be applied to an almost unlim-

ited number of shapes. As the shape becomes more complex, the determination of

the number and locations of the eigenvalues becomes almost impossible. The

aforementioned program allows the easy input of numerous interior points which

partially mitigates this problem. For scattering from the finite cylinder with axial

incidence, the most accurate and computationally efficient alternative is SHIP 8 2 .
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Determination of Dynamic Viscoelastic Moduli

The closed cell rubber materials are considered to be viscoelastic with high

losses. As with most rubbers, the dynamic behavior is strongly frequency, loading,

and temperature dependent. The manufacturing process is also important, in

particular, the addition of fillers such as carbon black9 2 and the cure times. There

are four distinct classes of methods employed to determine the dynamic viscoelas-

tic constants:

1. free vibration method.

2. direct observation of stress-strain curves.

3. resonance methods.

4. wave propagation methods.

The free vibration method has been extensively utilized since its main advantage is

simplicity. The method is particularly suitable for measurements at low

frequencies and for low loss materials. Lethersich 93 has demonstrated the free i-

bration method for frequencies up to 1000 Hertz using photographic recording

methods. The direct stress-strain method requires special equipment and involves

considerable difficulties in determining the stress-strain curve at high loading rates.

Kolsky94 points out the advantage of this method is that no assumptions are made

regarding the nature of the dissipative forces and the linearity of the system. The

three other methods assume linearity (mechanical behavior is independent of
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amplitude) and that the dissipative force is proportional to the time rate of change

of the strain.

In the audio frequency range, the dynamic moduli and loss factors are best

determined by resonance methods which are described by Read and Dean9 5 and

by wave propagation methods. There are basically three types of vibrations

employed in resonance studies which in order of increasing frecuency range, are

(1) flexural, (2) torsional and (3) longitudinal. For isotropic materials, Read and

Dean state that the complex Young's modulus is customarily determined from flex-

ural resonance tests in the frequency range of 20 Hz to 10 kHz and by longitudinal

resonance tests in the frequency range of 5 kHz to 50 kHz. The torsional reso-

nance tests give the complex shear modulus for frequencies greater than 500 Hz.

All of these tests are inherently low amplitude with average strain amplitudes on

the order of 10-6. This low amplitude generally eliminates any problems with

nonlinearity of the dynamic properties.

The method of exciting the flexural waves (i.e. free-free, clamped-free etc.) is

important since significant errors and spurious resonances may be introduced. The

flexural resonance method originated with Ide 9 6 and has undergone numerous

improvements as test equipment and theory have evolved. Spinner and Tefft97

provide and excellent summary of the methods and theory. Tefft and Spinner 98

also provide a review of torsional measurements for rectangular and cylindrical

bars.
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The longitudinal resonance method was first utilized by Quimby9 9 who

compared the resonances in a viscoelastic bar, determined by Stokes' theory, with

the experimental results for glass, copper and aluminum bars. Quimby excited the

specimen bar by attaching an oscillating quartz (piezoelectric) crystal to one end

and then measured the particle velocity at the other end. The correlation between

the experimental and theoretical results was considered excellent.

Ballou and Silverman1 00 modified the technique by using a light source and

photoelectric cell at the free end to record the displacement. Norris and

Youngl 0 1 ,1 0 2 used the longitudinal resonance method and attached

accelerometers to both ends. The fixed end was driven by a constant frequency

source. Madigosky and Leel 03 improved on Norris and Young's technique by us-

ing miniature accelerometers (Bruel & Kjaer type 8307) and a random noise

source as the forcing mechanism. The accelerometer signals were analyzed using a

Fast Fourier Transform (FFT) spectrum analyzer. Both Norris and Young and

Madigosky and Lee utilized Lee's 10 4 observation that if the frequency is adjusted

such that the two ends are out of phase by 90 degrees, the resonances are easily

determined. Madigosky and Lee also demonstrate wide applicability to both soft

(lossy) polymers and rigid metals. Capps1 0 5 has used this method to determine the

dynamic Young's modulus of some commercially available polyurethanes. No

published data for closed cell rubbers or corprene appears to be available 10 6, 10 7

Cramer 1 0 8 compares the Young' modulus determined by the flexural

resonance method and by the longitudinal resonance method for rubber rods in the
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1kHz to 8kHz region. He concluded that they agreed within the experimental

accuracy.

Nolle 10 9 has investigated the elastic properties of rubber-like materials for

frequencies between 0.1 Hertz and 120,000 Hertz using a combination of five ex-

perimental methods (one free oscillation method, three resonance methods and

one wave propagation method).

The wave propagation methods have been extensively used for non-dispersive

materials and ultrasonic measurements. Kolsky9 4 points out the advantages of this

method over the other methods are:

1. a large range of frequencies can be covered with a single specimen

(specimen sizing is not particularly critical).

2. in determining the attenuation, losses caused by extraneous supports

can easily be removed.

3. the method is highly accurate for non-dispersive materials.

Two disadvantages of the wave propagation method are:

1. generation of the particular wave of interest can be complicated.

2. interpretation of the results for dispersive materials can be very in-

volved.

This investigation will use wave propagation methods.

Master curves (complex modulus-frequency and loss factor-frequency curves

at constant temperature) can be generated for modulus measurements at different

frequencies and temperature. This procedure is based on the time-temperature
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superposition principle outlined by Ferry11 0 . This principle is based on the

viscoelastic material becoming more elastic due to greater molecular mobility as its

temperature is increased at constant frequency. The converse is also observed.

The result is that a decrease in temperature at constant frequency causes the same

change in dynamic properties as an increase in frequency at constant temperature.

Although there is no limit to the range this data may be shifted, Madigosky and

Lee suggest that reliable interpolation is assured two decades above and below the

measured range.

For rubber-like materials it is well established that Poisson's ratio, V, is

approximately 0.49. Since the materials to be studied have large concentrations of

air, it is expected that the Poisson's ratio will be less than 0.49 but it is unclear how

much less.

The plane wave modulus, M, can be determined from the longitudinal wave

speed. The common method of determining the wave speed is by using pulse and

comparing arrival times with and without the material present. The attenuation,

corrected for spreading loss and reflection, will yield the complex wave speed in

the material.

The reflection and transmission coefficients are experimentally determined

from panel measurements at various angles of incident (panel measurements

involve placing a flat panel of the material with a known thickness in a sound field

and measuring the transmission through or reflection off the panel. The panel
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dimensions are usually large enough so that the panel may be considered one

dimensional, i.e. an infinite planar surface). The experimental technique is

documented by Barnard et al. 1 1 1 and the theory is based on the work of

Brekhovskikh1 12 . Folds and Loggins 1 13 corrected the errors in Brekhovskikh and

Barnard et al. and extended the theory to multiple layers using a matrix approach.

To predict the elastic behavior of the material, two moduli must be

determined. The plane wave modulus is determined from panel measurements

and the Young's modulus, E, is determir.44 from wave propagation in a bar.

Losses in the material are accounted for by allowing the elastic constants to be

complex (now, they are technically viscoelastic constants). The following

assumptions concerning the materials are made:

1. The material is isotropic.

2. The air inclusions are relatively uniform in size and dispersion

(homogeneous).

3. The air inclusions are small relative to a wavelength.

4. The material is stressed within the elastic limit.

5. The amplitude of the acoustic displacement is small enough so as to

not affect the dynamic moduli.

The first assumption implies that the elastic properties are the same in all

directions. Homogeneous implies that the results will be sample independent.

The third assumption allows the material to be treated as a composite. The fourth
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assumption allows the material to be modeled with classical elasticity theory. The

final assumption eliminates displacement amplitude as an independent variable n

the determination of the elastic constants for small amplitudes 1 1 4 .
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CHAPTER II

Experimental Procedures

The experimental procedures are divided into two categories: determination

of viscoelastic constant and acoustic scattering experiments.

Determination of Material Viscoelastic Constants

The materials investigated are grouped into two classes: closed-cell rubbers

and rubber-cork composites. All materials are assumed to be isotropic. The four

materials are:

neoprene rubber with air cells

(RUBATEX* No. R-411-N)

nitrile rubber with air cells closed-cell rubbers

(RUBATEX* NO. R-416-N)

neoprene rubber with cork

(GROENDYKE* No. 712 [corprene])

nitrile rubber with cork rubber-cork composites

(GROENDYKE* No. 725)

(" refers to RUBATEX Corporation and GROENDYKE Manufacturing

Company, corprene is the tradename of the ARMSTRONG Rubber Company)
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In order to fully characterize the material, two viscoelastic constants and the

density are required. The viscoelastic constants will be treated as complex elastic

constants. The density is determined by the standard method of weighing a known

volume of the material. The measured densities are all within the manufacture's

specified ranges. The constants that are determined are the complex Young's

modulus, E, and the complex plane wave modulus, M.

Complex Young's Modulus

The complex Young's modulus is determined from the relation

2
E = p c (2-1)

where ce is the complex bar speed. The experimental setup is shown in figure 2-1.

A long rectangular strip of the material is glued to a Bruel and Kjaer (B&K)

shaker which is driven by a broadband pulse produced by a Wavetek model 275

signal generator and amplified by a Kronhite Model 7500 amplifier. The lateral

dimensions of the strip are approximately .25 inches with a length of greater than

30 inches. Since the length is very much larger than the other two dimensions, the

significant propagating wave is the extensional wave which is governed by the

Young's modulus.
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The procedure is to record the broadband pulse waveform at three locations

along the sample and at several center frequencies. The filter settings remained

constant for each center frequency group so as to ensure a consistent time delay.

Each waveform was time shifted to place the earliest pulse for a particular center

frequency group near the time origin. This shift is somewhat arbitrary and not

always the same for all groups. It is of paramount importance that the time shift be

the same for all samples within a particular center frequency group. A fast Fourier

transform (FFT) (standard IMSL FFT routine used) is then performed on the

shifted waveform. The purpose of the time shift is to reduce the frequency of

discontinuities in the FFT phase caused by the signal being time displaced from the

origin. Although it is not theoretically required, the reduction of the numerous

phase discontinuities facilitates unwrapping (removal of the 2?r discontinuities

resulting from the tangent function). The phase speed is determined from

wL (2-1)AOP + n2w

where A is the unwrapped phase difference and L is the distance between two

measurement points. Since the exact multiple of cycles between the two sample

points is not obvious, the n2i multiple is required for proper scaling. The 2X

multiple is determined from the time domain waveform. The time difference

between two apparently similar points on the two pulses is measured to obtain an

estimate of the phase speed. Ideally the center of the pulse should be used for
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estimation, however this point is often difficult to ascertain; therefore the largest

peak was used and assumed to be at the center frequency. An error in the

selection of n is easily recognized since there is a significant deviation in the calcu-

lated phase speed from the estimated value. The distance between sample points

was kept small so as to prevent significant distortion of the waveform caused by

dispersion. Specifically, the 21t multiple is determined from

n2w - AO (2-2)Ctest

The ratio of the FFT amplitudes determines the attenuation by

10 Amp2  (2-3)a L loge Amp 1

The FFT amplitudes also determine the boundaries of the usable frequency range

for the individual center frequencies. There is no specific guidance as to what

amplitude decrease from the maximum results in meaningless data. The

procedure employed is to use data with amplitudes greater than 10% of the

maximum (center frequency) amplitude and evaluate the data using a

"reasonableness criteria". The "reasonableness criteria" is based on:

1. there is sufficient overlap between frequency bands that the values should

be approximately the same.

2. the speed and attenuations of these materials are slowly varying
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(increasing) with frequency.

3. the frequency spacing is small enough so as to ensure large

variations between individual frequency points do not occur.

The wave was recorded at each sample location using a stereo phonograph

needle as a displacement sensor. The two outputs from the needle were summed

using an Ithaco preamplifier operating in the differential input mode which

maximizes the normal displacement. The amplitude of the signal is not dependent

on the contact pressure provided contact is maintained and the pressure is not

great enough to cause the needle to contact the backing assembly which results in

distortion of the observed waveform.

The sample was suspended vertically with the shaker at the top. The bottom

of the sample was glued to a 2 inch square lead block simulating a rigid boundary

condition. Attenuation in all the test materials was large enough to require the

sample points be located near the shaker. The attenuation and large distance from

the rigid end allows multiple reflections to be neglected.

Since temperature control facilities were not available, complete master

curves were not obtained. Extrapolation of the data using a log-log plot has been

shown to be valid for up to 2 decades above and below the measured data (see

Madigoski and Lee10 3 ). The data was obtained over the approximate frequency

range of 300 Hz to 3000 Hz. The upper frequency is limited by attenuation causing

the observed pulse to be dominated by noise. The maximum frequency required

for the shell modeling is 60,000 Hz which can be obtained by extrapolation.
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The above measurement procedure is subject to the following sources of

errors:

1. errors in digitizing the data.

2. computer round off error during the FFT procedure.

3. misalignment of the sample over the center of the shaker causing introduc-

tion of surface and flexural waves.

4. error in determining the distance between sample points resulting from

uncertain positioning of the stereo needle.

Errors introduced by means 1 and 2 are random and assumed to be very small

resulting in a less than 1% combined error. The generation of surface and flexural

waves can be disregarded since they travel slower than the extensional wave and

are highly attenuated. It is estimated that the sample point locations are accurate

to with in 2mm resulting in a possible 10% error for small sample point separations

at the higher frequencies.

Plane Wave Modulus Determination

The plane wave modulus is also determined by traveling wave techniques.

The experimental apparatus is illustrated in figure 2-2. A broadband pulse is

generated by a USRD F-33 transducer and measured by a B&K 8103 hydrophone.

The 8103 hydrophone is placed on the central axis of the F-33 transducer. A 36

inch by 36 inch panel of .25 inch thick sample material is placed between the F-33

transducer and the 8103 hydrophone. The sample is attached to a wood frame for
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support and is weighted so as to suspend vertically. The panel is positioned 15

inches (38 cm) from the F-33 transducer. This places the panel in the far field of

the transducer for all measured frequencies. Far field measurements are utilized

so as to avoid the axial (z axis) field amplitude variations that occur in the near

field of a piston-type transducer such as the F-33. In addition, far field

measurements allow the usage of a receiving hydrophone (8103) which is physically

smaller than the projector (F-33 transducer) since the x-y field variations that exist

in the near field are mitigated. For a frequency of 50 kHz, transition to the far

field occurs at 13.1 inches (= [F-33 radius] 2 /),). As illustrated in figure 2-3, for

l5kHz the columnar portion of the axial field (near field) extends for a distance of

3.94 inches (10 cm) from the F-33 transducer. This results in a spreading angle of

45" from the center axis; therefore at the panel location of 15 inches from the

transducer, the sound will cover 15 inches of the panel in the x-y plane. Diffraction

by the edges of the panel could interfere with the received signal for frequencies

less than 15kHz.

The experimental procedure is to record the waveform from the 8103

hydrophone with and without the panel in place. An FFT is performed on the

signal as was done in the Young's modulus experimeat. From a comparison of the

FFT data, the phase speed and attenuation is obtained. The closed cell rubbers

are highly attenuating and multiple internal reflections within the panel can be

neglected. The phase speed, c., is calculated from
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F-33 Transducer

-- 4 45'

z

10 cm
Panel1

Near Field

Figure 2-3 F-33 Beam Spreading at 15 kI-z for Panel Measurement
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_ 11 1(2-4)
wL c c

s W

where L is the panel thickness (0.25 inches (0.635 cm)), cw is the phase speed in

water (1.5 x 105 cm/sec), and AO isthe unwrapped phase difference between the

two signals. The attenuation, a, is determined from

Pwith panel 4 rIr2 -aL (25)
Pwithout panel (rI+ r2)

where r1 is the specific acoustic impedance of the water (= pw.C.,.)and r-) is the

specific acoustic impedance of the panel (P2c 2 ). The internal multiple reflections

for the corprene and cork-nitrile composites can not be neglected and are removed

by an iterative method described in Appendix E.

There are four possible sources of error in this experimental procedure:

1. errors in the digitizing of the data.

2. computer round off error during the FFT procedure.

3. misalignment of the F-33 transducer, panel,or 8103 hydrophone.

4. diffraction effects.

The first two error are the same as for the Young's modulus experiment and are

considered very small. Misalignment resulting from the F-33 transducer and the

panel not being exactly parallel results in a variation of the effective thickness. A

10. misalignment will cause an error of 1.5% in the speed measurement.
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Additionally, shear and flexural waves can now be generated in the panel. The

fourth source of error, diffraction effects, is avoided by setting the lowest usable

frequency greater than 15kHz. Since the wave generation effects will not be

investigated, the maximum error assumed will be equal to the maximum data

spread for the same frequency between two adjacent center frequency data groups.

The maximum observed data spread in the phase speed measurement was 7%.

Scattering Experiments

Two basic scattering experiments were performed: (1) scattering at normal

incidence from a long circular tube simulating an infinite cylindrical shell, and (2)

scattering from a thick, finite cylindrical shell %ith flat end caps. The pertinent

distances for the scattering experiments are determined acoustically.

Infinite Cylinder Experiment

For the infinite cylinder simulation, the tube is commercial grade, seamless,

304 stainless steel tubing with an outside radius of 1.5 inches (3.81 cm) and a wall

thickness of 0.035 inches (0.089 cm). The ratio of inner to outer radii is 0.977

which implies the tube should scatter like a thin shell. The length of the tube is 8

feet.

The experimental setup is illustrated in figure 2-4. The acoustic source is a

USRD F-33 transducer. The receiving hydrophone is a B&K 8103 hydrophone.

Both the cylinder and F-33 are suspended vertically which ensures they are
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F-33 Transducer 8103 Hyrophone Shell

56 cm 90.3 cm

di 56 cm + 90.3 cm =146.3 cm

d2= 90.3 cm

Figure 2-4 Experimental Setup for Infinite Shell Measurements
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parallel. The B&K 8103 and target are both located in the far field of the

transducer. Due to the length of the target and location of the transducer, end

effects of the target are negligible for center frequencies greater than 18 KHz.

Since broadband pulses were used, the scattered signals from the ends could be

time-gated out for center frequencies less the 18 KHz. The measurements are tak-

en over an approximate ka range of 1.5 to 15 using ten broadband pulses. The

reference (incident) signal is obtained by replacing the target with the B&K 8103

hydrophone (at the same physical location). The FFT amplitude of the reference

signal is compared to the FFT amplitude of the scattered signal to determine the

form function.

The scattered signal must be corrected for spherical spreading in the vertical

plane since the incident wave is spherical not planar. The form function corrects

for cylindrical spreading in the horizontal plane. Spherical spreading in the

backscatter direction can be represented as cylindrical spreading in two orthogonal

planes; therefore the scattered signal is multiplied by

d I + d

correction 1 d (2-6)

where dl is the distance from the F-33 transducer to the center of the target and d2

is the distance from the center of the target to the 8103 hydrophone.

The following four experiments are performed:
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1. uncoated shell only.

2. .25 inch (.635 cm) nitrile coated shell.

3. .0625 inch (.159 cm) corprene coated shell.

4. .3125 inch (.794) corprene coated shell.

The coatings were glued with contact cement and care was taken to prevent any air

inclusions between the coating and the shell. The seams of the coating were placed

on the forward scatter side of the target.

The measurements on the uncoated shell were used to validate the experi-

mental method and theoretical calculations since similar results are well

documented. The purpose of the two thicknesses of corprene was to determine if a

pressure release boundary condition could be achieved and the effect of thickness

towards the realization of this goal. A secondary purpose of the two thicknesses of

corprene was to validate the theory for low attenuation material and for thickness

variation. The nitrile coating's main purpose was to attempt to achieve a pressure

release boundary condition and secondary purpose was to validate the theory for

large attenuation materials.

Finite Cylinder Experiment

The finite cylinder is constructed of commercial grade, seamless, 304

stainless steel pipe with an outer radius of 2.0 inches (5.08 cm) and a wall thickness

of 0.1875 inches (0.476 cm). The ratio of inner to outer radii is 0.906. The length

is 12.75 inches (32.30 . . The end caps are constructed of 304 stainless steel plate
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and are 0.75 inches (1.905 cm) thick. The scattering geometries used are:

(1) incident wave traveling along the center axis (end on), illustrated in

figure 2-5.

(2) incident wave traveling normal to the center axis (side incidence),

illustrated in figure 2-6.

This cylinder should scatter in a similar manner to the classical thick shell, i.e. the

first antisymmetric and symmetric Lamb modes in addition to other resonance

structure should be present.

The purpose of this experiment is to determine if the scattered pressure of

the finite thick shell would as a pressure release finite cylinder as determined by

the SHIP and CHIEF radiation programs. This requires the characteristic

scattering behavior of the stainless steel structure to be eliminated by coating the

finite cylinder with a highly attenuating, low acoustic impedance coating. In other

words, can the structure be made to "look" pressure released thereby acoustically

decoupling the structure by use of the coating.

For each geometry, measurements are taken for the uncoated cylinder and

for the cylinder coated with 0.25 inches (0.635 cm) of the closed cell neoprene.

The ka range covered is approximately 1.5 to 15 by using broadband pulses as in

the previous experiments. An FFT is taken on the scattered signal and the FFT

amplitude is compared to a common reference obtained at the geometric center of

the cylinder. Positioning information is not of sufficient accuracy to make the FFT

phase information useful. For both geometries, the 8103 hydrophone is located in
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F-33 Transducer 8103 Hyrophone Shell

R

56Tc 
90.3 cm

R -Radius of finte cylinder (5.08 cm)

Figure 2-5 Finite Cylinder Experimental Setup for Axial Incidence
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F-33 Transducer 8103 Hyrophone Shell

b, R

56 cm 90.3 cm

R =radius of finite cylinder

Figure 2-6 Finite Cylinder Experimental Setup for Normal Incidence



58

the far field of the target.

Experimental errors arise predominantly from misalignment of the target.

Two possible errors are:

(1) the target is not positioned at exactly the same location relative the

reference location.

(2) the target is angularly misaligned so that the incident signal is not exactly

normal to the surface of interest.
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CHAPTER III

Experimental Results and Discussion

Viscoelastic Moduli Determination

For the Young's modulus and plane wave modulus determinations, the

measured quantities are the phase speed, C p, and attenuation, a. These two

quantities combine to give the wave number of the particular wave, either exten-

sional or longitudinal wave, generated.

k = C + L (3-1)
p

The attenuation is determined in units of nepers/cr, and converted to dB/cm (by

multiplying by the conversion factor of 8.6859). The respective viscoelastic

constant (complex quantity) is determined from the complex wave number by

2
M P W (3-2)
k 
2

m

The measurements were not performed on numerous samples or lot numbers so

direct application of these results to other samples is cautioned. Accuracy of the
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results is difficult to estimate. However, the data spread obtained for different

center frequency groups provides a reasonable measure of the accuracy. The

Kramers-Kronig relation, linking the attenuation with dispersion (frequency

dependence of the phase speed), is utilized as a check of the data for a particular

measurement sequence. O'Donnell, et al. 1 15, derives the local Kramers-Kronig

relation for linear acoustic systems:

2 2 dC
a - 2 (3-3)C2  df

0

where f is the frequency, CO is the phase speed, and dCp/df is the experimentally

measured local slope from the phase speed verses frequency curve at Co. The

densities of the materials are tabulated in table 3-1.

Table 3-1

Density of Materials

Material Density (grams/cc)

closed cell neoprene 0.224
closed cell nitrile 0.248

corprene 0.720
cork-nitrile 0.670
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The closed cell neoprene data is shown in figures 3-1 through 3-4.

The extensional data becomes unusable at frequencies greater then 3500 Hz. The

maximum spread of data for the extensional speed measurements was 10% and for

the extensional attenuation measurements was less than .5 dB/cm. The maximum

spread of data for the plane wave speed measurements was 5% and for the plane

wave attenuation measurements was less than 1.0 dB/cm. The extensional

attenuation predicted by the Kramers-Kronig relation using the experimentally

determined phase speed - frequency curve is within 7.5% of the experimentally

measured attenuation. The plane wave attenuation predicted by the Kramers-

Kronig relation is within 3% of the measured attenuation. Extrapolation of the

extensional data to higher frequencies indicates that the Poisson's ratio is slightly

greater than 0. Microscopic inspection of a cross section of the material indicated

the material should be isotropic.

The closed cell nitrile data is shown in figures 3-5 through 3-8. The

attenuation is too large to allow accurate measurement of extensional data at

frequencies greater then 3500 Hz. The maximum spread of data for the extension-

al speed measurements was 5% and for the extensional attenuation measurements,

the maximum spread of data was less than .5 dB/cm. The maximum spread of data

for the plane wave speed measurements was 4% and for the plane wave attenua-

tion measurements was 1.0 dB/cm. The extensional attenuation predicted by the

Kramers-Kronig relation is within 3.7% of the experimentally measured

attenuation. The plane wave attenuation predicted by the Kramers-Kronig rela-
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tion is within 1% of the measured attenuation. Extrapolation of the extensional

data to higher frequencies indicates that the Poisson's ratio is between 0 and 0.2.

Microscopic inspection of a cross section of the a .25 inch thick material indicates

the material is isotropic. Microscopic inspection of the 1/16 inch thick nitrile

reveals a very different air bubble structure than is present in the .25 inch nitrile.

The thicker nitrile consists of relatively small, uniformly dispersed air bubbles

throughout the matrix whereas the 1/16 inch nitrile has the same small bubble

consistency but with the additional presence of the very large bubbles randomly

dispersed throughout the matrix. It is very questionable if the measurements for

the .25 inch thickness apply to the thinner material.

The corprene data is shown in figures 3-9 through 3-12. The extensional

attenuation is too large at frequencies greater than 5000 Hz. to allow accurate

measurement. The maximum spread of data for the extensional speed

measurements was 3% and for the extensional attenuation measurements was 0.7

dB/cm. The maximum spread of data for the plane wave speed measurements was

1.5% and for the plane wave attenuation measurements was less than 0.3 dB/cm.

The extensional attenuation predicted by the Kramers-Kronig relation is within

25% of the experimentally measured attenuation. The Kramers-Kronig relation is

not easily applied to the plane wave data since the slope of the phase speed-fre-

quency curve is small and not obvious. Small variations in the slope result in

differences of 50% of the predicted attenuation. As a check of the data, the FFT

analysis was performed on the early portion of the transmitted waveforms where
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Figure 3-9 Corprene Extensional Speed versus Frequency
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CORPRENE EXTENSIONAL ATTENUATION
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Figure 3-10 Corprene Extensional Attenuation versus Frequency
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the length of the waveform was selected so as to prevent any multiple internal

reflections from interfering. The above analysis of the shortened waveform was in

excellent agreement with the analysis of the complete waveform which accounted

for multiple internal reflections. Horsley and Thompson 1 16 report the longitudi-

nal speed of corprene (manufactured by Armstrong Rubber Company) to be

3.0x10 5 cm/sec at 10 kHz as determined by impedance tube measurements. Al-

though these two materials are not produced by the same manufacturer, they do

have the same military specification (mil spec). The extensional phase speed is sig-

nificantly greater than the longitudinal phases speed for comparable frequencies

(well beyond any possible experimental error) which indicated the Young's modu-

lus is larger than the plane wave modulus. The moduli are related by Poisson's ra-

tio as follows

M - E (1 v) (3-4)(1 + y)(l - 2v)

For any positive value of Poisson's ratio, the plane wave modulus is always greater

than the Young's modulus and they are equal at a Poisson's ratio of 0. The

conclusion is that the material is slightly anisotropic. Microscopic inspection of

the longitudinal wave path and the extensional wave path shows a preferential

alignment of the cork particles so that the thinner portion of the cork particle is

aligned in the extensional wave propagation direction. This particle alignment

mostlikely occur-red during the rolling phase of fabrication. Since the plane wave
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data is directly applicable to the frequency range of interest, a Poisson's ratio of 0

is assumed and the Young's modulus is set equal to the plane wave modulus. The

shear modulus, which is required for the viscoelastic layer program, is determined

from

E
G 2 (3-5)

The validity of this assumption will be determined when the actual scattering

measurements are compared with theoretical calculations for a Poisson's ratio of 0

and 0.4.

The cork-nitrile data is shown in figures 3-13 through 3-16. The extensional

attenuation is too large at frequencies greater than 5000 Hz. to allow accurate

measurement. The maximum spread of data for the extensional speed

measurements was 3% and the maximum spread of data for the extensional attenu-

ation measurements was 0.2 dB/cm. The maximum spread of data for the plane

wave speed measurements was 8.3% and for the plane wave attenuation

measurements was less than 1.5 dB/cm. The extensional attenuation predicted by

the Kramers-Kronig relation does not agree with the experimentally measured at-

tenuation. The experimental attenuation was verified by direct calculation from

the waveforms. The plane wave attenuation predicted by the Kramers-Kronig rela-

tion is within 25% the experimentally measured attenuation. The larger than

expected variations in the plane wave measurements appear to be the result of in-
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strument malfunction. The waveforms were recorded by a digital waveform re-

corder which appears to have had a slight oscillation in the trigger delay function.

This would insert a constant phase shift error for a particular center frequency

group causing the phase speed and attenuation results to be slightly shifted relative

to other center frequency groups. Review of the extensional phase speed and lon-

gitudinal phase speed shows the same anistropic behavior as the corprene. Micro-

scopic inspection of the cork-nitrile shows a preferential alignment of the cork

particles in the extensional wave propagation direction.

To summarize our experiences with the measurement methods employed: 1.

The panel measurements consistently provided excellent result with proper overlap

between individual center frequency groups (with one exception attributed to

instrument malfunction). 2. The Young's modulus method, although appearing

simple, was in reality a difficult measurement to obtain reasonable data from for

two reasons: (1) the closed cell rubbers were highly attenuating, which required

locating the data samples too close together, which introduced large percentage

errors in the distance measurement between data collection locations. (2) the

Poisson's ratios for all of the sample materials was unexpectedly low which reduced

the amplitude of the displacement recorded by the phonograph needle making the

signals susceptible to noise. It appears the Kramers-Kronig relation agrees well

with experimental data for isotropic materials but not so well for slightly

anisotropic materials.
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Scattering From the Simulated Infinite Cylinder

Scattering measurements for the uncoated cylindrical shell were the first

measurements performed. The frequency range covered by these measurements

was 5 kHz to 65 kHz. This experiment served as a check of the experimental

method since similar measurements are well documented. The scattered signal for

all ka values was inverted relative to the incident signal. The plot of the

experimentally determined form function versus ka, where k is the wave number in

water and a is the outer radius of the shell, is plotted in figure 3-17. The different

point markers and connecting lines indicate different center frequency groups of

the incident signal. The theoretical calculation of the form function is plotted as

the solid line superimposed over the experimental data. The agreement between

the experimental data and the theory is generally excellent. Agreement is poor in

the region between ka values of 1 and 2 due to an unexplained resonance present

in the experimental data at a ka equal to 1.5. There should not be any resonances

in this ka region hence some undetermined experimental factor must be involved.

Measurements in this ka region (frequencies of 10 kHz and less) are potentially

suspect due to the physical size of the measurement tank which makes the

separation of the scattered signal from the multiple background echos

progressively more difficult at low frequencies. Both curves indicate the presence

of the first symmetric Lamb mode which causes the first sharp dip in the form
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function at a ka of 3.7. The second circumnavigation of this wave is observed at a

ka of 7.45 resulting in a Aka of 3.75. The theoretical calculations assume a Young's

modulus of 2.2x10 12 dynes/crn 2 . The first resonance dip occurs when the wave-

length of the first symmetric Lamb mode is equal to the circumference of the shell.

The corresponding value of ka that the resonance dip occurs at is determined

below.

V E = 5.53xi05 cm (3-6)SIP P(l 2) sec

2a -. 'Sa a - 3.69 (3-7)

The theoretical value of the ka location of the first symmetric mode is slightly

lower than the experimental ka value indicating a small error in using the tabulated

values of either the Young's modulus or other constants. This slight deviation in

the material constants most likely resulted from the manufacturing processes.

Since facilities were not available to actually measure the elastics moduli of the

stainless steel and the deviation is small, the tabulated values will be used. The

form function versus ka plot also indicated the first antisymmetric mode will not be

excited for ka values less than 10. (This observation is consistent with the theory

since for the thin shell the phase speed of the first antisymmetric Lamb mode is

significantly less than the propagation speed of the water.)
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The first coating experiment performed was with the shell coated with 1/16

inch corprene. Figure 3-18 shows the theoretical form function, calculated by the

procedure derived in Appendix D, as the solid line and the experimental data as

points. The theoretical calculation assumes a Poisson's ratio of 0. The agreement

of the theory with the experimental data is excellent. The form function graph

does indicated a slight ka misalignment of the theoretical values with the

experimental values of the form function similar to that observed for the uncoated

shell. The theoretical and experimental form functions show resonance dips at

approximate ka values of 1, 2, 3.7, and 4.2. The experimental data for ka values

less than 2 is sparce. Two significant observations regarding the effect of the thin

coating are:

1. the magnitude of the form function is reduced by the coating for ka values

greater than 4 but, for ka values less than 4, the form function has an overall

greater magnitude.

2. the resonance dip caused by the second circumnavigation of the first

symmetric mode has been completely eliminated.

Figure 3-19 compares the theoretical form functions for the 1/16 inch corprene

coating assuming a poisson's ratio of .4 and 0. For ka values less than 3.5, there is

little difference. Substantial difference occurs for ka values greater than 3.5.

Specifically, there is a larger and shifted resonace at a ka of 4.8 and a second

resonace, mostlikely the second travel of the first symmetric wave at an

approximately ka of 7.5. These additional resonances are not substantiated by the
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experimental data. Due to excellent agreement between the theoretical and

experimental values, Poisson's ratio will be assumed to be 0.

In order to investigate the effect of thickness on coating performance, an

additional .25 inches (.635 cm) of corprene was added to the 1/16 corprene coating

(total corprene coating of 5/16 inches). Figure 3-20 shows the theoretical form

function as the solid line and the experimental results as points. The agreement is

excellent between ka values of 1.5 and 8.5. The experimental data shows a

decrease of approximately 0.5 dB at ka=9.0. This decrease is probably caused by

experimental error. In the higher frequency range, the compliant coating is

becoming more attenuating, therefore decoupling sound from the shell more

efficiently, and theoretically should be approaching the pressure release boundary

condition. Experimental errors that could cause a reduced scattered signal at this

relatively high frequency (56 kHz) are:

1. the shell may not be completely vertical.

2. slight misalignment of the shell, 8103 hydrophone, and F-33 transducer.

3. possible scattering of the incident signal by the 8103 hydrophone and its

support tube.

Significant deterioration of the experimental data occurs below a ka value of 1.5.

This result is consistent with all previous measurements and is attributed to the fre-

quency range and measurement facilities. "The effect of the additional coating

material is to shift the resonances to lower ka values and to spread the resonance

dip over a wider ka range (remove the sharpness of the dip). The sharp resonance
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dip that occurs at a ka of 3.7 on the thinner corprene coating is shifted to a ka

value of 2.5. The dip also covers a Aka range of 2 whereas the resonance width of

the thinner material covers a Aka of .5. The depth of the dip is slightly reduced for

the thicker coating but not as much as expected. The relative peak that occurs at a

ka of 4.2 for the thinner coating is shifted to a slightly lower ka value and its

magnitude is increased from 0.88 to 0.93. Noticeably missing from the thicker

coating plot is the extensive resonance structure that exist for the thinner coating at

ka values less than 2. Another unanticipated result is that the magnitude of the

form function after a ka of 7 is approximately 1 dB lower than the thinner coating

form function. The peak that exist at the approximate ka value of 4 has reversed

relative magnitude positions with the flat portion of form function (for ka values

greater than 7). If a Poisson's ratio of .4 is utilized in the theoretical calculations,

the resonance dip at ka=2.7 and peak at a ka=4.3 are significantly larger than

indicated by the experimental data. The thicker corprene layer has therefore

reinforced the evidence for a small Poisson's ratio.

For both corprene thicknesses, the scattered signal was inverted relative to the

incident signal.

Figure 3-21 shows the form function plots for various thicknesses of corprene

coatings. It is particularly apparent that for even large thicknesses of corprene (36

times the shell thickness), the resonance structure is present for ka values less than

3.0.
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The final infinite cylinder coating experiment was to coat the shell with .25

inches of closed cell nitrile. Figure 3-22 shows the results of the experimental

values (points) plotted with the theoretical form function (solid line). Again, the

agreement between the theoretical and experimental values is excellent. The

experimental data shows some structure in the 3 to 5 ka range that is not indicated

in the theoretical form function. Two plausible explanations for this additional

structure are:

1. seams in the coating were not sufficiently closed to prevent partial

excitation of the shell.

2. when the coating was placed on the shell, the curvature caused the coating

to be slightly stretched to ensure a smooth fit over the shell. The stretching may

have caused the air bubble in the coating to elongate in the tangential direction

and shrink in the radial direction causing an effective reduction in the percentage

of air, relative to a wavelength, between the fluid and the shell.

As ka values become smaller, the theoretical form function increases rapidly

which is characteristic of the perfect pressure release cylinder. At a ka of

approximately .2, the form function peaks and approaches 0 as ka approaches 0.

This behavior is consistent with physical reality since at some small ka (large wave-

length to coating thickness ratio), the coating will cease to "look" pressure release

and the form function will be dominated by the characteristics of the shell, i.e.

approach 0 as ka goes to 0.
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Figure 3-23 displays the theoretical form functions for two thicknesses of the

closed cell nitrile and the pressure release cylinder as a function of ka. The form

function for the .25 inch thick sample of nitrile is within I dB (the standard accura-

cy measure for most scattering experiments) of the form function for the pressure

release cylinder for ka values equal to and greater than 0.5. The resonance

structure of the shell is effectively removed (there are no resonance peaks or dips

that have a greater variation than I dB from the baseline form function). The 1/16

inch nitrile does not produce a pressure release condition for ka values less than 4

as indicated by the large resonace dips at ka values of 3.7 and 0.8. As the ka values

increase, both thicknesses of nitrile show an increased pressure release behavior as

expected.

Figure 3-24 is the scattered waveform for the uncoated shell and figure 3-25 is

the waveform for the nitrile coated shell for center frequencies of 40 kHz. The

echo from the uncoated shell is dominated by the specular reflection. The only ob-

vious difference in the waveforms (coated shell versus uncoated shell) is the

presence of a small extension of the signal at the end of the specular reflection for

the uncoated shell.

Figure 3-26 illustrates that a .25 inch nitrile coating on a thin shell, with an

inner to outer radius ratio of .99, will decrease the form function of the shell by 1.6

dB (the form function of the coated shell remains about the same magnitude

regardless of the shell thickness but, the form function of the shell increases for low

ka values as the thickness decreases).
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Finite Shell with End On Incident Sinal

The following observations are made from the waveforms and normalized

scattered pressure versus ka plots for the coated and uncoated finite cylindrical

shell experiments for axial incidence. The finite shell is coated with .25 inches of

closed cell neoprene rubber for the coated case. Figures 3-27 and 3-28 are

representative waveforms for the uncoated and coated cases. The center frequency

for the waveforms in figures 3-27 and 3-28 is 60 kHz. The significant observations

are:

1. the uncoated shell's specular reflection is in phase with the incident signal

whereas the coated shell's specular reflection is inverted relative to the incident

signal.

2. The specular reflections for both cases have similar magnitudes. The

coating does not have a significant effect on the magnitude of the normalized

scattered pressure, although the coated shell's normalized scattered pressure is

consistently slightly larger than the uncoated normalized pressure, for ka values

less than 11 as indicated in figure 3-29. The reason for this slight magnitude

difference is that the coated cylinder is physically larger due to the .25 inch in-

crease in radius. This 12.5% increase in radius affects the scattered field in a

quadratic manner whereas the ka scaling only accounts for the increased radius lin-

early. For ka values greater than 11, the neoprene coating eliminates the severe
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resonance structure present in the uncoated case.

3. For the uncoated shell, a second scattered signal arrives at 320

microseconds after the specular reflection. This time difference corresponds to the

time necessary to travel the length of the shell at the longitudinal wave speed of

the stainless steel (68 useconds) plus the time to travel the length of the shell at the

propagation speed of the water (251 Aseconds). The difference between the

experimentally observer time delay and the calculated time delay is less than 5%c.

The actual path traveled is unknown. In figure 3-30, the center frequency is 45

kHz, the second scattered signal shape is different from figure 3-28 and it appears

the signal is actually a combination of signals indicating possible multiple

reflections are occurring in the end caps.

4. Figure 3-31 compares the coated shell's normalized scattered pressure

versus ka with the normalized scattered pressure determined by the SHIP program

for the ideal pressure release finite cylinder. Both the coated and uncoated shells'

normalized pressures follow the trend of and are within 2.5 dB of the SHIP results

for ka values less than 11. At the larger ka values, the uncoated shell's normalized

pressure significantly departs from the pressure release structure predicted by the

SHIP program. The SHIP program values were verified by the CHIEF program

and were found to be within 1% at a ka of 2.0 and within 3% at a ka of 3.0. The

CHIEF program employed a 480 sub-division scheme. Verification at larger ka

values was not performed due to the large amount of computer memory

(proportional to the number of subdivisions squared) and the long computational
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time required by CHIEF. For the equivalent accuracy (as indicated above), the

CHIEF program required approximately 5 hours computer time (cpu) versus

approximately 2 minutes of computer time for the SHIP program on a VAX 750

computer.

Although the coated shell's normalized pressure does show some structure,

particularly at the low ka values, it is unclear if this results from acoustic transmis-

sion through the layer and excitation of the shell or from acoustic excitation of

shell via the seams of the coating. In either case, the resonance effects are substan-

tially damped.

Finite Shell Aith Normal (Side) Incident Signal

The following observations are made from the waveforms and normalized

scattered pressure versus ka plots for the coated and uncoated finite cylindrical

shell experiments for normal incidence. The finite shell is the same shell and

coating used for the end on or axial incidence case. Figures 3-32 and 3-33 are

representative waveforms for the uncoated and coated cases. The center frequency

for the waveforms in figures 3-32 and 3-33 is 40 kHz. The observations are:

1. The uncoated shell's specular reflection is in phase with the incident signal

whereas the coated shell's specular reflection is inverted relative to the incident

signal.
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2. For the uncoated shell, the two types of circumferential waves are

observed. The first circumferential wave observed is the first symmetric Lamb

mode which travels with a phase and group speed of

Vs E - 5.53 x 105 cm (3-8)
p(1- 2) sec(

The difference in arrival times of subsequent circumnavigations of the shell is

equal to the circumference of the shell divided by the phase speed (60 Aseconds).

The first travel of the symmetric wave is contained in the specular reflection and

can not be directly observed. Subsequent travels of this wave is observable in

figure 3-34 which has a 20 kHz center frequency. The second circumferential wave

observed is the first antisymmetric Lamb mode. The phase speed is determined

from equation (1-8)

V4 E w
a,p I 3p ( 2 - 2  2

This equation for phase speed neglects any curvature effects. Viktorov3 6

demonstrates a curvature correction that relates the phase speed as calculated in

the center of the shell (by the above equation) to the phase speed at the outer

surface by

h

Vp,surface 2 a V p 1.047 V (3-9)
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where a is the outer radius of the shell. For the 40kHz center frequency incident

signal, the curvature corrected phase speed for the first antisymmetric Lamb mode

is 1.53x10 5 cm/sec. In order for the wave to be generated in the shell, the phase

speed of the wave must be greater than the propagation speed of the water. For a

30 kHZ center frequency, the first antisymmetric mode is still observed even

though the calculated phase speed is less than the propagation speed of the water.

Three reason for this are:

a. The elastic constants for the stainless steel shell are actually higher than

the tabulated values, possibly due to the fabrication process.

b. The sound propagation speed for the actual measurement facilities needs

to be more accurately determined (actual temperature corrected speed is 1.48x05

era/sec).

c. The standard plate analysis is not sufficiently accurate for this shell

experiment, since the shell is fluid loaded on one side and air loaded on the other.

In addition, end effects caused by the thick end caps are not accounted for.

Figure 3-35 is the waveform, for the coated shell for an incident signal center

frequency of 40kHz. Particularly noticeable is the lack of the antisymmetric mode

signal after the specular reflection.

3. In figure 3-36, the normalized scattered pressure is plotted against

increasing ka values for both the coated and uncoated cases. The normalized

scattered pressure for the coated shell is approximately three times larger than the
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normalized scattered pressure for the uncoated shell for ka values less than 4.0.

The larger scattered pressure is partially accounted for by the coated shell being

slightly larger, physically than the uncoated shell due to the addition of the .25

inches of neoprene even though the ka values are adjusted to account for this.

4. For ka values greater than 6, the normalized scattered pressure of the

coated shell shows a significant reduction in structure. It appears that the

resonances are averaged to a slowly varying mean value of the uncoated shell's

normalized scattered pressure.

5. The experimentally measured normalized scattered pressure for the coated

shell is compared with the ideal pressure release scattered pressure calculated by

the CHIEF program in figure 3-37 for ka values less than 4.0. All of the data, with

one exception, is within I dB of the calculated pressure. The experimental

pressure oscillates about the pressure release value indicating the average pressure

over the ka range approximates the pressure release condition. The CHIEF

program was run with 480 subdivision and is accurate for a ka value less than 4.

Subdivision schemes necessary for ka values greater than 4.0 were computer

memory and time limited.
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CHAPTER IV

Conclusions and Recommendations

The primary objective was to determine if a shell, thick or thin, can be made

to scatter as a pressure release structure by the application of a viscoelastic coating.

In order to achieve this boundary condition, the coating must cause the folloVing

effects:

1. The coating must cause the pressure on the surface of the target to be sip-

nificantly smaller than the incident pressure. The physical results of the signifi-

cantly smaller surface pressure are that the scattered signal must be inverted

relative to the incident signal and the magnitude of the scattered pressure must be

equal to the magnitude of the theoretical pressure determined for the pressure

release solution.

2. The shell must be acoustically decoupled from the scattering problem, i.e.

the resonance effects must be removed and the coating must not exhibit elastic

effects of its own.

The secondary objective was to determine how thick the coating must be in order

to achieve the primary objective.

- --------- im Il l n
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In order to determine the thickness of coating required, the viscoelastic

constants of the coating materials had to be determined. For the closed cell

rubbers the plane wave modulus was determined for the frequency range of 15 klHz

to 30 kHz and the Young's modulus for 500 Hz to 3 kHz. The Young's modulus

was then extrapolated to higher frequencies in order to estimate the Poisson's ratio

and the shear modulus. The Young's modulus extrapolation was not as accurate as

had been anticipated based on previous observations for other materials. This

inaccuracy resulted in a wide spread for the derived Poisson's ratio, (estimated

between 0 and .2), causing a correspondingly wide spread for the complex

transverse wave number ( 1.41 to 1.63 times the complex longitudinal wave

number). There was no measurable difference in the theoretical form functions

determined by the two different values of the transverse wave numbers. This in-

sensitivity of the form function to the variation in the the transverse wave number

results from: (1) the phase speed of the closed cell rubber is at least an order of

magnitude smaller than the phase speed of either the shell or the surrounding

fluid, therefore, the 13% change does not significantly affect the overall speed

relationships. (2) the attenuation in the closed cell rubber is very large which

results in an almost complete decoupling of the shell. An increase in the attenua-

tion caused by increasing Poisson's ratio from 0 to 0.2 can not decouple the shell

further. The experimental and theoretical results are in excellent agreement. The

cork-rubber composites were determined to be slightly anisotropic. This anisotro-

py is small enough not to invalidate the isotropic model. The Poisson's ratio was
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estimated to be very small (material properties ar, lominated by the cork which

has a Poisson's ratio of approximately 0). For the corprene, a Poisson's ratio of 0

resulted in excellent agreement of the theory with the experimental results.

For the (infinite) thin shell, the pressure release boundary condition can be

achieved by the addition of the .25 inch nitrile coating. The inversion of the

specular relative to the incident signal can not be directly attributed to the coating

since the shell's form function is in the soft background region for the ka range of

study. For thinner coatings of the nitrile, the pressure release boundary condition

can only be achieved at higher ka values.

The corprene does cause a reduction in the resonance effects, but even at

large thicknesses (3.2 cm), the corprene is not as effective as the .635 cm of nitrile.

The overall conclusion is that corprene is not a viable pressure release coating for

low ka values.

For the thick (finite) shell, the .25 inch neoprene coating is a fair

approximation to the pressure release surface. For both orientations of the target,

the neoprene causes the inversion of the specular reflection and a significant sup-

pression of the resonances. The normalized scattered pressure for the axial inci-

dence case is within 2.5 dB of the theoretical pressure release value (mostly

greater) as calculated by the SHIP radiation program. For the side incidence case,

the normalized scattered pressure is within 1 dB of the pressure release value as

calculated by the CHIEF radiation program for ka valued less than 4.0.
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For all the shell measurements performed, the application of the coatinv

significantly increased the amplitude of the scattered pressure relative to the

uncoated in the low ka range. The .25 inches of nitrile added to the thin shell

(inner to outer radius ratio of .97) raised the form function 4.5 dB relative to the

uncoated shell at a ka of 2.0. The .25 inch thick neoprene coating increased the

normalized scattered pressure of the finite thick (inner to outer radius ratio of .90)

shell 8.9 dB relative to the uncoated shell for side incidence at a ka of 4.0. (There

was not a significant change in the magnitude of the normalized scattered pressure

of the finite shell for end on incidence indicating that the end caps were scattering

as a rigid body.) As the shell becomes thinner, however, the closed cell coatings

will actually lower the for function.

All of this data was taken over a frequency range of 15 kHz to 70 kHz. It is

not expected that these results would scale well to any other frequency range

(typical ka scaling) because the performance of the coating depends on the size of

the air bubbles in the material relative to the acoustic wavelength. The size of the

air bubbles in the materials is fixed and therefore, for any other frequency range,

the ratio of bubble size to wavelength would change.

The materials in this study are not well suited for deep submergence

applications. Corprene has been shown to have an increase in its longitudinial wave

speed of 300% due to pressure effects (see Horsely and Thompson1 16 ). The

neoprene closed cell rubber was left under 15 feet of water for several weeks which

resulted in an unrecoverable reduction in volume of approximately 50%.
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The acoustics community has long considered corprene as the benchmark

pressure release material for underwater scattering. This study demonstrates both

experimentally and analytically that corprene is, at best, a fair pressure release

material and is substantially outperformed by the closed cell rubbers. The

tendency of the closed cell rubber to degrade with submergence time (the air

leaches out of the rubber) can be prevented by potting the closed cell rubber in a

material acoustically matched with the water (i.e rho-c rubber). It is also apparent

from this study that the thickness of the shell is an important variable when deter-

mining the thickness of the coating required to achieve the pressure release

condition (.25 inches of the closed cell rubber decouples the thin shell more effi-

ciently than the thick she!l).

The following continuing work is recommended:

1. The development of techniques which would allow the shear modulus to be

measured in the frequency range of interest.

2. All theoretical models of the materials which could predict the shear and bulk

moduli failed to predict accurate values. A model that allows air concentrations of

approximately 80 volume percent is necessary.

3. A numerical computer code that allows the evaluation of the scattering problem

for a finite structure that takes into account the elasticity of the viscoelastic

coating, the shell and the end caps.
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APPENDIX A

Derivation of the Scattered Field and Surface Velocity From an Infinite Pressure
Release Cylinder for an Incident Plane Wave

In this appendix the scattered pressure from an infinite, pressure release

right circular cylinder is determined for a normally incident plane wave. The

surface boundary condition (pressure release) defines the acoustic pressure on the

surface to be zero; this allows the actual material properties of the cylinder to be

neglected. The derivation is general in that the incident plane wave is taken to

approach the cylinder at an arbitary oblique angle, a, to the center axis of the cylin-

der (see figure A-I). The solution will be reduced to the special case of interest i.e.

normal incidence by setting a equal to zero.

The governing equation for the region exterior to the cylinder (r>a) is the

scalar wave equation

V2P(r,t) 1 1 aP(r,t) (A-1)
c at2

A harmonic time dependence, exp(-twt), is assumed which reduces the wave equa-

tion to the scalar Helmholtz equation
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V2P(r) + k2P(r) - 0 wherek --- (A-)

C

In the previous two equations, P(r,t) is the total acoustic pressure and consists of

the incident pressure, P(r,t)inc, and scattered pressure, P(r,t)s. The acoustic wave

speed of the exterior fluid medium (water) is denoted by c. In the Helmholtz

equation, the time dependence is suppressed. In order to determine the form of

the scattered pressure, the Helmholtz equation for the geometry of interest (right

circular cylinder) must be investigated. For the infinite right circular cylinder, the

Helmholtz equation is separable. The pressure is assumed to be of the form

P(r,e,z) - R(r) e(8) Z(z) (A-3)

where r,#,and z are the standard cylindrical coordinates. The Helmholtz equation

becomes

1 d r 4dR ) + 1 d2O 1 d2Z =0 (A-4)

Rr dr dr Or2 dO2  Z dz2

After applying the separation of variables technique, the following three equations

result

r d r dR I R - 0 (A-5a)
r dr dr r r2
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d + m2 - 0 (A-Sb)

de
2

d + k2Z 0 (A-5c)

dz2  z

2 2 2 W
k 2 -k 2 +k where k r - cos(a) and k = sin(a)2 r z r cosazan c

C

The general solution for the radial equation, R(r), is a combination of Bessel

functions of the first and second kind (or Hankel functions of the first and second

- kind). The solution for 0(9) iscos(mG) and sin(mG), where m must be an integer

for the solution to be continuous at 8 = 0 = 27. Due to the symmetry, the 0

futnction must be even with respect to the 6 = 0 which eliminates the sin(me) form.

The general solution for Z is a combination of exp(-Lkzz) and exp(Lkzz). The

second solution of Z is eliminated by requiring the solution to be finite as z

approaches infinity.

For the scattering problem, the incident wave can be written

Pinc(r,e,z) = P0 exp(-tk.r) = P0 exp(-tkz)I'
m fm cos(mB) Jm(krr)

m=O

(A-6)
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where em is the Neuman factor (cm I for m =0 and cm 2 for mn > 0),

~Jm(krr) is the cylindrical Bessel function of the first kind, and k is the wave

propagation vector.

The total pressure is the sum of the incident pressure and the scattered

pressure. The scattered pressure is assumed to be of the form

P5(r,8,z) - P0 exp(-tkzz)j Lm cm cos(mO) Am Hlm(krr) (A-7)

Mi=0

In order to determine the constant Am, the pressure release surface bounda-

ry condition is employed.

Ptotal(a,e,z) = P0 exp(-tkzz) TjLm Em COS(m8) (Am HIm(kra) + Jm(kra))

ni=O

W 0 (A-8)

The orthogonality of the cosine function is utilized by multiplying equation (A-8)

by cos(ne) and integrating with respect to G for e between 0 and 27t.

2wr

PO exp(-tkz 0 (m Am H'm(kra) + Jm(kra) JJcos(mO) cos(nG) dO 0

0
m=O

(A-9)
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After simplification, the constant Am is determined to be

Jm(kra)

A - r (A-10)
m HI (k a)

m r

The total pressure is determined by substituting equation (A-10) into

equation (A-7).

Ptotal(r,e,z) " PO exp('tkzz) t m cos(ma) Jm(kra) -

m=O

J (k ra) HIHl~ra (krr) J (A-If)

H I(k a) r
m r

The actual quantities of interest are the radial surface velocity and the far-

field scattered pressure for the normally incident (a = 0) plane wave. The normal

incidence condition removes the z dependence from the solution since kz = 0 and

kr becomes equal to k = w/c. The radial component of the velocity follows from

Euler's equation

VP(r,8,t) = e + - ee - p = -0(-4) Vre + V
ar r ae pr

the radial velocity becomes V = (A-12)r pkc 8r (-2
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Substituting equation (A-li) for the total pressure, P, then V rbecomes

- P0  d

Vr(a,O) ) tLN+1 em cos(inG) f -~a Jm(ka) -

M=0

Jm(ka) d
- H'in(ka) (A-13)

Hlm(ka) d(ka)

The surface velocity, equation (A-13), is simplified by using the Wronskian formula

W(J,H) -H I(ka) d J (ka) - J (ka) - Hl(ka) -2 (A-14in d(ka) m M d(ka) mn 71 ka (A)

the surface velocity becomes

-PO 2 1
Vr(a,O) LMn fm cos(in8) - (A-15)

Pc- 7ka Hlm(ka)

in=O

The scattered pressure is derived by subtracting the incident pressure from

the total pressure yielding
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Jm(ka)
Pa, -POXLM (M cOs(rfO)[ Hlm(ka) Hlm(kr)] (A-16)

m=O

The general form for the nondimensional, normalized far field pressure is

P(r,O) - Function(ka,O) (A-17)

Po a ekrj -e

The far-field scattered pressure is obtained by taking the limit of the Hankel

function as the argument asymptotically approaches infinity in equation (A-16). In

Arfken 1 17 , the asymptotic form of the Hankel function of the first kind is shown to

be

H I ( ) = ][ 2 ( - ( m + I . . .~l ) + . .m, )

-I e (P MW(+) QMW) (A-17)

for -x<arg( )<2w (for this particular derivation is real and arg(.)=O)

where P() - 4m 2 -2 1+ order[ &41

128E2

(A-18)

Qm 4m 2 1 order 3
M,
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In the limit as ,, Pm() 1 and Qm () 0 resulting in

Le2( + I ) I
H ) = e e 2 2(A-19)

The normalized far-field scattered pressure becomes

P5(r,O) Jm(ka) 2 r11 i
. m m cos(m8) . exp -L m + - -

Hlmka) ka2 2

a

P - e"tkr m-0 (A-20)
0 r

The far field cylindrical form function is defined to be the square root of 2 times

the magnitude of equation (A-20).

2r P (rO)

f(a) a P (A-21)

The right side of the equation (A-20) is numerically calculated. The Besse]

functions are calculated using the recurrence and normalization methods described

in Abramowitz and Stegun1 18 and Hitchcock1 19. Satisfactory verification of the

Bessel functions with published tables for test arguments was obtained. (The

method is also valid for Bessel functions of complex arguments which are required
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in Appendix C.) The infinite series is terminated when the ratio of the next term in

the series to the total sum is less than 10-6.

Determination of the Low Frequency Limit

Only the first term of the series of equation (A-20) needs to be retained in

order to determine the low frequency limit of the normalized scattered pressure.

The normalized backscattered (6 = 7t) pressure is approximated as

rW
P (r, 0) 1 0 J(ka) 2 (A-L2)

a tkr aiit H1 k I ka I
P0 r e0

where the kimit0  J (ka) = 1 and where the

kimito N (ka) = - {In (k-) + -f (I is Euler's constant)

The far-field backscattered cylindrical form function becomes

f CO(8=w) _2 .f 2 (A-23)

1 + I~{n( ]
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Determination of the High Frequency Limit or Specular Reflection

The following specular reflection derivation for the cylinder parallels the der-

ivation for the sphere in Urick 12 0 . There are four basic assumptions required for

this method:

1. the scatterer is perfect in shape,

2. the magnitude of the reflection coefficient equal to unity,

3. the scatterer is immoveable,

4. the radii of curvature of the scatterer is larger compared to

the acoustic wavelength (ka > > 1).

The approach of this method is to relate the energy contained in a small acoustic

beam which is incident on a small area, dS, of the curved surface to the spreading

of that incident energy upon reflection at a unit distance. For this derivation, the

cylinder is considered to be infinite with the center axis normal to the wave

propagation vector. The radius of the cylinder is a.

As shown in Urick, the acoustic center, Q, is located a distance of a/2 from

the geometric center, C. If the waves were to penetrate the surface, they would be

focused at the acoustic center, Q. Upon reflection from the surface area, the

reflected waves appear to originate from a line source located at the acoustic

center, Q. The specular reflection far-field form function reduces to the constant

value of 1.0.
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P (r,G) =

f - • F -2 1.0 (A-26)
ao I a
P 0 

2 r

The normalized far-field backscattered form function as a function of ka is

plotted in figure (A-2). Figure (A-2) shows the backscattered pressure rapidly

approaches the geometrical limit and is within 5 percent of that limit by a ka of ap-

proximately 6. For the low frequency limit, the backscattered pressure is within 1

percent of the low frequency limit at a ka of approximatedly .09.
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APPENDIX B

Pressure Release Spher_

The solution for the scattered far-field pressure of the ideal pressure release

sphere follows the standard approach of expressing the field pressure as an infinite

series of spherical harmonics and solving for the series coefficients. The geometr-,

of the problem is illustrated in figure B-1 where the incoming plane wave is trav-

eling in the + Z direction. Standard spherical coordinates are used. Due to the

symmetry of the problem, the solution is independent of 0. The exp(-Lwt) time de-

pendence is suppressed.

The spherical harmonic expression for the incident plane wave traveling along

the polar axis is

Pin(,0) - Po -- (2m + 1) tm Pm(cosO) jm(kr) (B-1)

m=O

where Pm(cose) is the Legendre polynomial of order m and jm(kr) is the spherical

Bessel function of the first kind of order m.

The total pressure, Ptot, is the sum of the incident pressure, Pinc, and the

scattered pressure, Pscat.
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Figure B-i Geometry for Pressure Release Sphere



136

Ptt inc (,0)+pscat (ri,,) (B-2)

The scattered pressure can be expressed as the following general spherical

harmonic infinite series

40 I

Pscat(r,8,O) -jF FiYcm,n(6,O) q0m,n(kr) where a is +1 or -1l (B-3)

m-0O n-0

and Y(Inin(8,0) is the spherical harmonic and q0 m~n(kr) is a combination of jm(kr)

and h%7(kr) which are determined from the boundary conditions. Since the

problem is independent of 0, Y~m,nj(0,0) reduces to Pm(cose). The pressure

release condition causes the incident wave to be completely reflected resulting in

only an outward traveling scattered wave.

q a(kr) -h I(kr) (B-4)
rn,n in

With simplification, the scattered pressure becomes

Pscat(rO) =ZIAn Pm(cosU) hln1(kr) (B-5)
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The total surface pressure is zero and with the substitution of equations (B-i) and

(B-5), equation (B-2) becomes

0 - F-jpo(2m + 1) 0m Pm(COSU) jm(ka) + Am Pm(cos8) hlm(ka) (B-6)
0-

ma0

In order to determine the constants Am, the orthogonality property of the

Legendre polynomial is utilized by multiplying equation (B-6) by Pn(coso) and

integrating with respect to d(cos8) from -I to 1.

0 - Po(2m + I)tmjm(ka) + Amhlm(ka) Pm(cosO) Pn(cosO) d(cosB)

m=0

(B-7)

Simplification yields the series constant

Po i, (2m+ I)j m(ka)

A - m (B-8)
m h I(ka)

Substitution of equation (B-8) into expression for the scattered pressure, equation

(B-5), results in

I
I
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-PO Lm (2m + 1) im(ka)
pscat(r,$) hl=a Pm(coO) hlm(kr) (B-9)

The far-field scattered pressure is obtained by utilizing the asymptotic form of the

spherical Hankel function for the argument approaching infinity

limit h I(Z) (-Le) L (B-10)

In addition, the far-field scattered pressure should be of the standard form

Pff(r)9) - p. (-- f(ka,8) e' Lr (B-li)

where f(ka,e) is the far-field spherical form function. The resulting normalized far-

field scattered pressure is

pscat(r,e) (2m + 1 ) jm(ka)
Pm(cosO). (B-12)

a 
ka hlm(ka)

p0 I exp(tkr) m=O
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APPENDIX C

Modification of the Naval Ocean Systems Center (NOSC) CHIEF Program

With NOSC Technical Document 97074, Benthein and Barach released a

modern fortran program to compute the acoustic radiation from an arbitray-

shaped body using the CHIEF method developed by Schenck 71 . The radiation

program computes both the near-field and far-field pressures of a closed surface, S,

provided the normal surface velhcity distribution is known. In particular, the

program first calculates the unknown surface pressure by solving the surface

Helmholtz integral equation

( ()t(, + LaP V[O) etkr(xo) dS(o) (C-I)

2irPSI an J0 P1) r(x,o) J LW ) r(x,o)

The integral is solved numerically by subdividing the surface into Ns subregions

and assuming that the surface pressures and normal velocities are constant in each

subregion. The result of this approximation is a system of linear algebraic

equations. The algebraic equations are generated from the following
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Ns

a exp(-&kr(Cm,a)
21rPm(x) -Pn 1J ~- . r~~a dS(a) -

n-I Sn

Ns

LWP Vn  dS(a) (C-2)j j r(Em,a)J

n i Sn

l, 1, Nn

where Em is some reference point on Sm. In matrix notation the previous equation

can be written as

A p = B v (C-3)

where

A - 2m - kr(E,o) ] dS(u)

B L(,a e dS(a) (C-4)

sM

n

and p = (Pm) and v = (Vm) are vector of the surface pressure and surface

velocities respectively. The surface integrals is A and B are solved by Gaussian
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quadrature. Matrix equation (C-3) does not yield a unique solution at certain

characteristic frequencies. The CHIEF method overcomes this uniqueness

problem by forcing additional constraints on the surface pressure. In particular,

the interior Helmholtz equation must also be satisfied by the surface pressures and

velocities for interior locations at all frequencies. This program allows interior

points of S to be input which are related by

eF F a 1 ~ eLkr(x~a)
P(o) r(xa) + tp V(a) r(xa) dS(u) (C-5)

m N + 1, ,Ns + N. where N. is the number of interior points.S S 1 1

Equation (C-3) is still valid but with the coefficients modified to

2716mn - [ - o-- 1 ) dS(o) m= I to N

Ainn r r [ e'Lkr(xm'a)
e i(x- ) dS(a) m = N to N + N.

ana r(xm'a)s S 1

S [ -kr(e ,a dS(a) m I to N
r(E is) I s

n
B
mn

e- eIr(x- m a dS(a) m - N to N + N.

n (C-6)
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The matrix equation is now overdetermined and solved by the Householder reduc-

tion technique. Once the surface pressure is determined, the exterior Helmholtz

equation is used to determine the field pressure.
Nn

1 exp(-tkr(x,u))
P(x) - Pn a dS(a)JJ ;anf r(x,o) J

n -I Sn

Nn

LWP f[ exp(-tkr(x,o))
+ Vn  ( ] dS(a) (C-7)

4i~ J r(xa)

n - I Sn

The previous discussion is a summary of the methodology used in the program

developed by Benthein and Barach with considerable more detail contained in

NOSC TD 97074.

The objective of the appendix is to modify this program to determine the

scattered pressure field from a plane wave incident (Pinc) on a pressure release

surface. Unlike the radiation program, the surface pressure is initially defined to

be zero with the normal surface velocity to be determined.

The scattering version of the Helmholtz integral is still applicable.
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47P(x) . ep & e-kr (x, a) + (a)etkr(x,o)
Irx an r(x,a) + Viol r(x,a)

+ 4wr Pin x) (C-8)

Since P(x) is defined to be zero on the surface, the equation (C-8) reduces to

. I1 LUP V e kr(x,a) dS(a) (C-9)
in~x 4w is] o r(x,o)

The surface geometry and surface subdivision sections of the the CHIEF program

are utilized to define the surface. The incident pressure is calculated at the center

of each subdivision by exp(-LkX 3 ) assuming the plane wave is traveling in the + X3

direction (this program assumes an exp(twt) time dependence). Matrix equation

(C-3) reduces to

B v = - P. (C-10)
inc

from which the normal surface velocities are determined by a standard equation

solver subroutine. The difficulty of characteristic frequencies still exists but matrix

equation (C-10) may be overdetermined in a similar manner to the radiation

problem. Once the normal surface velocities are known, the field pressure

portions of the CHIEF program are utilized, with the surface pressures set to zero,

to compute the scattered field. The scattered far field pressure is computed from
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Ns
P(x)

Pff(x) L = Vn Bff(x,n) (C-11)
&k exp( &,kR)

n=l
4w R

where Bff is the far-field version of B.

Verification of the program modification is only expeditiously possible for two

closed pressure release surfaces, i.e. the sphere and the finite cylinder. An exact

analytical solution is available for scattering from the pressure release sphere and

is contained in Appendix B. The finite pressure release cylinder with an axially

incident plane wave can be compared to the proven solution generated by SHIP 82 .

The scattering geometry for the pressure release sphere is illustrated in figure

(C-i). The surface is divided into a total of 144 subdivisions with 12 equiangular

divisions in both the theta and phi coordinates. If the usual rule-of-thumb of 10

subdivisions per wavelength is used, this subdivision scheme is anticipated to be ac-

curate up to a ka of 2.5. Due to symmetry, the field is only dependent on the r and

theta coordinates. The analytical solution for the far-field pressure is

P(r,P)
Ns

PO -L(2m+l) jm(ka)

Lk exp(-kR)__, hlm(ka) PM(cOS()) (C-12)

m=O
4w R

where Pm(cos(O)) is the Legendre polynomial of order m.
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A comparison between the program and analytical solutions of the

normalized far-field pressures for ka between 1.0 and 4.0 is tabulated below.

Table C-1

Comparison of CHIEF Results for Pressure Release Sphere

Program Solution Analytical Solution

ka Eta]_ Ig R eal Imaginary

1.0 -.547 -8.69E-2 -.544 -8.72E-2
1.5 -.205 -.535 -.204 -.533
2.0 .333 -.424 .332 -.422
2.5 .533 6.93E-2 .528 6.95E-2
3.0 .220 .478 .216 .475
3.5 -.295 .428 -.291 .429
4.0 -.523 -4.56E-2 -.515 -1.69E-2
4.5 -.247 -.534 -.256 -.443

ka Program Magnitude Analytical Solution Magnitude Error(%}

1.0 .581 .580 0.20
1.5 .573 .571 0.35
2.0 .539 .537 0.37
2.5 .537 .533 0.75
3.0 .527 .522 0.96
3.5 .520 .518 0.39
4.0 .525 .514 2.14
4.5 .589 .512 15.04



147

The pressure release program is accurate to within 1 percent over the ka range of

1.0 to 4.0. The results are somewhat surprising in that accurate results are

obtained up to a ka value of 4.0 (less than 10% error) which results in approxi-

mately six subdivision per wavelength. There are no indications that the two

solutions would not match at larger ka values provided the number of subdivisions

was appropriately increased.

The cylinder verification is for the plane wave traveling in the -Z direction and

incident on the flat ends of the cylinder. The subdivision scheme was to divide the

top into three circumferential rings of equal radial dimension. Each ring was also

divided into six equiangular sections in the theta direction. The bottom end was

partitioned in a similar manner. The side of the cylinder was divided into six equal

sections in the axial direction and six equiangular sections in the theta direction for

a total 72 side subdivisions (see figure (C-2)). For the SHIP solution, the top and

bottom ends of the cylinder were divided into 3 circumferential rings of equal

radial dimension. The side of the cylinder was divided into six equal

circumferential rings in the axial direction. Due to the symmetry of the problem,

the subdivision schemes are equivalent. As with the pressure release sphere, the

anticipated accuracy is up to a ka of 2.5. The results are tabulated for normalized

surface velocity in each of the rings for ka = 0.5, 1.0 and 2.0.
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Table C-2

Comparison of CHIEF Program With SHIP Program

Band Real Velocity (x10"6 ) Real Velocity (x1Q6 )

1 -1.207 -1.203
2 -1.254 -1.256
3 -1.806 -1.808
4 -2.226 -2.219
5 -0.9588 -0.9593
6 -0.6741 -0.6740
7 -0.4270 -0.4269
8 -0.1997 -0.1994
9 0.2568 0.2554
10 0.5964 0.5968
11 0.5193 0.5197
12 0.5199 0.5178

Band Imaginary Velocity (x10-6) Imaginary Velocit (x1O-6)

1 0.4213 0.4207
2 0,4854 0.4869
3 0.9919 0.9953
4 1.995 1.991
5 1.279 1.280
6 1.248 1.249
7 1.253 1.254
8 1.296 1.296
9 2.049 2.046
10 1.046 1.050
11 0.5266 0.5281
12 0.4618 0.4610
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ka 1. Pressure Release Program SHIP

Real Velocity (xlO-6)Real Velocity (x10-6

1 -1.033 -1.030

2 -1.081 -1.082

3 -1.595 -1.597

4 -2.040 -2.034

5 -0.8935 -0.8941

6 -0.6263 -0.6263

7 -0.3906 -0.3905

8 -0.1750 -0.1758

9 0.2171 0.2159

10 0.4387 0.4392

11 0.3467 0.3472

12 0.3350 0.3338

Band Imaginary Velocity (xlO-6) Imaginary Velocity (xlO-6)

1 -0.2564 -0.2545

2 -0.2099 -0.2092

3 0.0132 0.0151

4 0.7538 0.7537

5 0.6674 0.6676

6 0.7140 0.7141

7 0.7416 0.7516

8 0.7523 0.7525

9 1.036 1.035

10 0.3033 0.3049
11 0.0171 0.0176

12 -0.0303 -0.0297
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ka = 2.0 Pressure Release Program SHIP

Real Velocity (xl0-7) Real Velocity (x10-7)

1 -5.538 -5.529
2 -6.100 -6.115

3 -10.606 -10.633
4 -16.442 -16.402

5 -7.709 -7.714

6 -5.215 -5.216

7 -2.777 -2.779

8 -0.534 -0.535
9 3.075 3.063
10 2.126 2.131

11 0.318 0.319

12 -0.178 -0.175

Band Imaginary Velocity (x1O-7) Imagina-y Velocity (x1O-7)

1 -9.867 -9.823
2 -9.346 -9.348

3 -9.135 -9.127
4 -2.315 -2.285
5 2.853 2.851

6 4.439 4.439
7 5.213 5.212

8 5.230 5.229

9 5.587 5.583

10 -0.1290 -0.1216
11 -1.395 -1.398
12 -1.544 -1.541
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APPENDIX D

Scattering From the Coated Infinite Cylinder

In this appendix, the solution for the far-field scattered pressure from an

infinite, hollow elastic cylinder coated with a viscoelastic solid is derived. The

elastic cylinder is considered lossless whereas the losses in the viscoelastic solid will

be accounted for by employing a complex wave number. The method of approach

is to formulate the displacement potentials for the hollow, infinite elastic cylinder

for an arbitrary incident plane wave and reduce this solution for the normal inci-

dence case. This result will then be extended to the laver problem. This solution is

applicable to all layer and wall thicknesses since no shell approximations are

utilized.

Scattering From an Infinite Elastic Cylinder With Arbitrary Incidence

The geometry for the elastic cylinder is shown in figure D-1 where -Y is the

angle of incidence referenced to the Z axis. In the elastic solid, the displacement

equation of motion for no body forces is
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Figure D-1 Scattering Grornetry for Infinite Cy'lindrical Shell
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V 2U + (X + 2g)V(V.U) p U (D-1)
at2

where U is the displacement, t is time, p is the material density, and g and X are

Lame constants (g is the shear modulus and X + 2v is the plane wave or longitudi-

nal modulus). Utilizing Helmholtz's theorem, the displacement is written as the

gradient of a scalar potential function and the curl of a vector potential function.

U(r,8,z) = uer + vea + we a VO + V x * (D-2)

Associated with this expression for the displacement, the gauge invariance of the

transformation of equation (D-2) allows the divergence of the vector potential to

be an arbitrary function (see Armenakasl 21 ).

V • * = F(r,t) (D-3)

Substitution of equation (D-2) into equation (D-1) yields

UV 2(V + V x f) + (X + 24) V V . (Vr + V x p) = p 2 (V¢ + V x 4)at2

This equation is simplified by using the following vector identities

V • V = V 20 and V V x =

The equation of motion is then reduced to

V (X + 2)V2€ - p 2 1 + V x U , P 2 # - 0 (D-4)
at2 at



155

From equation (D-4) it can be seen that the potential expression for the

displacement, (D-3), satisfies the equation of motion if the scalar potential, 0,

satisfies the scalar wave equation and the vector potential, *, satisfies the vector

wave equation.

7 a 2 where C2 X + 2A (D-5)
V2 C 2 at 2  d =  p

d

2 1 a 2 2 X2 ~ (5
- - where C (D-6)

C 2  at 2  s p
2ca

In equation (D-5), Cd is the dilatation or longitudinal wave speed and Cs is the

transverse or shear wave speed. Each wave equation will be solved using the

standard separation of variables technique.

The scalar wave equation, (D-5), in cyli.,drical coordinates is

F + 2 a 2 2 2

ar2  r ar r 0 az Cd at I

where 0(r,0,z,t) = R(r)O(6)Z(z)e (a harmonic time dependence is

assumed). The functional form of 0 is substituted into equation (D-7)

and after simplification, the equation can be written as

2

R " R ' 1 9 1 -Z oe = 2
-+ + 2 + 2

R rR r e Cd Z

| m 1 ml mmd
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The Z(z) dependence is separated out with C2 being the separation con-

stant yielding

Z" + C2Z - 0 which results in Z(z) - Ae z + Be- z  (D-9)

Equation (0-8) is modified with the second separation constant, n, to

r 2 + W 2_R' C2] 2 -0" 2

+R" + - + 2 r - = 7 (D-10)

R r Cd 2

The theta equation separates out to G" + 72 8 0 (D-11)

where 8(9) = D cos(On) + E sin(On). Since 9(8) must be single valued,

17 must be an integer, n, equal to 1,2,3,...

The radial equation can be written as

R" + R' + W 2 R = 0 (0-12)
r Cd

which is Bessel's equation of order n and argument a where

2
C 2 (D-13)

C
2

The most general solution is:
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R(r) = GnJ (or) + HnY n(or)

The general form for 0(r,O,z,t) is

Z (Anexp(-Lz) + Bnexp(-t{z)(Dncos(n8) + Ensin(ne)(GnJn(ar) + HnYn(cr))

n=O

. exp(-twt) - 0 (D-14)

The incident pressure wave for an angle of incidence of -y is

P inir O zt) = P eL(KR - wt)

Ln En cos(nO) Jn(- cos(r)) exp(-twt) (D-15)
C

n=O

(C is the propagation speed in the fluid)

For this derivation, 0 represents the dilatation wave which results from the incident

wave and, should have a form similar to its exciting force. In particular, the Z de-

pendence should be the same as the incident wave, i.e. a traveling wave in the Z

direction, which requires Bn = 0. The potential 0 must be symmetric with respect

to 0 = 0 (even funtion in 0) requiring En = 0. The result is
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0(rOzt) - exp(t( z - wt) - cos(n8)(GnJn(or) + HnYn(ar)) (0-16)

n=O

The vector wave equation in component form with an e " Jt time dependence

is

2 r 2 2 r e

r r a(r r r

2 2

+v2s* e - -e.+ (er + •zezJ (D-17)
+ 2z ez C 2  Crr aa

s

The following solutions are assumed:

* r (r,' ,z) = h r(r) sin(nB) eL z (D-18)

* 8 (r,O,z) = h6 (r) cos(nO) eL z (D-19)
la

Sz(r,O,z) = h z(r) sin(nO) e LZ (D-20)

The 9 functions must be singled valued which requires n to be an integer. The se-

lection of the sine and cosine term in tr, *9 and *z results from the required nature

of the 0 dependence for the longitudinal, torsional, and flexural modes (see

Graff12 2 p.4 66). The form of coupling between *r and *g in the er and eq

components indicates that a sine dependence for *r is consistent with a cosine de-

pendence for *e. Additional justification for the trigonometric selection for *z will



159

be presented later. The Z vector component results in the scalar wave equation

for *z

2 2
V2z W -W2 (D-21)

C2 
z

s

The solution to equation (D-21) is similar to that for 0(r,O,z) and is

* z(r,O,z) -el ( z ) sin(n8)(CI n(fr) + C2Yn(fr)) (D-22)

|• 2

where W _2 (0-23)
C
2

s

The two coupled equations for the hr(r) and h0(r) dependences are

d 2h 1 dh 1 f 2 1 22r r +- n hr + 2nh hr - 2h  + - hr 0

dr2 r drr
S

(D-24)

d2h 1 dh 1 22 2
nh-+ 2nh h h + -26

dr 2  r dr r C

(D-25)

Equations (D-24) and (D-25) are then solved simultaneously for

hr and h resulting in two coupled Bessel's equations. Subtracting

(D-25) from (D-24) yields
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d 2 1id + 02 _(n +l2) ( 0(-6
2r dr r2

This Bessel's equation solution is

h r - h a = 2C 3 J n+ fr) + 2C4 'n+ fr) (D-27)

Adding equations (0-24) and (D-25) yields

td 2 1d + 0 (n 2 1)2  (h r + h a 0 (0-28)

The solution to this Bessel's equation is

hr +h6 = C5 J n-for) +2CS Yn-for) (-9

adding and subtracting equations (D-28) and (0-29) gives h rand h a

hr -C 3 Jn+ 1r) + C4Yn+ ir) + C5Jn- 1$r) + 6Y foir) (0-30a)

hB 3 Jn+ fr C4Yn+1$r) -C5Jn- for) -C6 Yn- ior) (0-3Db)

As shown by Armenakas, et al. 12 1, the gauge invariance yields V 4'* = F(r)

where F(r) is arbitrary. Meeker and Metzlerl,2 3 demonstrate that F(r) can be

adjusted so as to eliminate one potential function (since there are eight constants

and six boundary conditions); this is equivalent to setting C5 and C6 equal to zero.

The result is
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hr -- h6  where hr - C3J n+r) + C4Yn+t.r). (0-24)

The displacement components of equation (D-2) can now be written as

u - R' + -L h + h cos(n8) e'( '_'t) (025)r rz

v [ n R + Ch -h' ) sin(n8) e L( z- t,

r r z (0-25b)

w- [-R h' (n+l) h cos(nl eL( z -Wt) (D-25c)

n+ 1
For normal incidence, w = 0 {. = sin = 0) or h' + n+ h = 0

r r r

Substitution of equation (D-24) into the above expression yields

+ Jnjfir) + C4  Yn+jIr) +  n+1 Y njr) 0

This expression must be valid for all values of n and Or. If n = -1 the above expres-

sion reduces to

C3 J1 (fr) = -C4YI( O r)

In the limit as ,r -, 0,C 4 must equal 0, and in the limit as Or -. ,C3 must equal 0.

This is only possible is both C3 and C4 are zero; therefore, hr and h9 mustalso be

zero for the normal incidence case. This result is also intuitive since the only con-

tribution to the Z displacement component, which is zero, is from the curl of hr

and h9 . The gauge invariance allows one potential to be set to zero, therefore the



162

other must also be zero or constant.

For the normal incidence case, tz represents the shear wave in the c)linder

which must vanish at G equal to x and 0, and be a maximum at 0 equal to 7/2 and

31/2. Since the shear wave is antisymmetric with respect to 0 equal to 0, the sine

trigonometric function is the proper selection for the 9 function for *'z .

Scattering From the Two Layer Cylinder With Normal Incidence

The normal incidence layer problem is similar to the elastic cylinder (normal

incidence) derived previously in that two potential functions can fully represent the

wave behavior in layers. The outer layer is assumed to be viscoelastic with the loss

factor being represented by a complex wave number. The inner layer is assumed

to be perfectly elastic which is valid for most metals below the megahertz frequen-

cy region. The method of solution is to represent the stresses and displacements in

the four regions and solve the boundary value problem. The geometry is

represented in figure D-2. For notation purposes, ki is the wave number in the re-

gion i (i = 1,2,3,4). In regions 2 and 3, the s and d subscripts indicated the wave

number is for the shear (transverse) and longitudinal (dilatation) waves respective-

ly.

In region 1 (exterior fluid), the total pressure, Pl(r,O), is the sum of the

incident plane wave and scattered pressure
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Y

Poexp(il(jX)

Pl, kj
P2, k2 b

K1  P

P3 k3 a

Figure D-2 Scattering Geometry for the Layered Cylindrical Shell
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Pl(r,e) =P 0 T E n cos(nO) ( bn O~n (k~r) + Jn(klr)). (D-26)

n-0

In the viscoelastic layer, region 2, the potentials are

02(r,O) = P0 T E cos(nO) (cflJf(kd2r) + dflyf(kd2r)) (D-27)

n=0

*2(r,O) - POZLn En~ sin(nO) (eflJf(ks2r) + fflyf(ks2r)) (D-28)

n=0

In the elastic layer, region 3, the potential functions are

03(r,O) -P0 ILfn En cos(ne) (gnJn(kd3r) + hnyn(kd3r)) (D-29)

n-0

0

*J3(r,O) - POIT n En sin(nB) (lnJn(ks3r) + mnyn(ks3r)). (0-30)

n=0
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In the interior fluid, region 4, the pressure is written as

P4 (r,P) - PO -j Ln Cn cos(ne) ( Nn Jn(k 4r)). (D-31)

n-O

The displacements in terms of the potential functions are

a@ 1 85u - u(r,O) - --- +  a (D-32)

v = v(r,O) r - (D-33)r ao ar

The stresses in terms of the potential functions are

rr _ 2 02€ 1 as i a2s 1
Ir kd 2 + 2 2 + (D-34)r r o r ar

S-2 2 a0i a2# I a* 1 a2*
2 +2 2SaO Oear Or r ar r a

(0-35)

The radial displacement in regions 1 and 4 may be written in terms of

the pressure using Euler's equationt

u - 2 OP (0-36)
pw ar
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The radial stress is the negative of the pressure in these regions.

The boundary conditions are the requirement of continuity of stress

and aisplacement across the three interfaces. They are as follows:

(i) at r=c,

1 1 2 2
rr 1' re

(ii) at r=b,

2 3 1 2 2 3 2 3I = 7' , u = u , v = v,iT = 7 rrr rr G rO 8

(iii) at r=a,

3 3 4 3
7rr P u = u, 7 =0 (D-37)

A set of ten equations in ten unknown coefficients results as follows:

D x n- A (D-38)

where x is a column vector of the unknown coefficients, A is a col-n n

umn vector of the nonvanishing elements A and A and D is a 10 x 10

matrix with 60 nonzero elements which results from application of the

boundary conditions. The D matrix nonzero coefficients are:
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2

P HI(k C) (0-39)

A, ~ 2 n 1
222 nkkc)

D, (2n2 _ k2 c2  - c d21, s2 )J(kd2c) 2kd2CJn(kd
2 2 n

DI, (2n 2 _ ks2C2 )Yn(kd c) -2k cY'(k C)
1 ( 2 n) d2 d2 n d2

DI, " 2n(ks2J'(ks2) - Jn(k c))1,4 s2 n d2c )ns

D1,5 - 2n(ks2cY(ks2C) - Yn(ks2c))

O -2nk cY' I(k C)- k

D2,1 -kc H1 ' 1

S k c (kc)
2,2 d2 Jn(kd2C)

D2,3 = kd2C Yn(kd2c)

D2,4 - n Jn(ks2c)

D2,5 - n (ks2c)

D3,2 =?n(Jn(kd2c) - kd2cJ'(kd2c))

D3, 3 = 2n(Y n(kd 2c) kd2CYn(kd 2c))

D = 2k cJ(k c) +(k2 2 - 2n2)Jn(k c)
3,4 s2 ns2c s2c n s2
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D -2k CY'(k c) +(k 2 2 2n )y (k C)
3,5 s2 n s2 s2 ns

14,2 kd2b~ nd 2b

D - k b Y(kb
4,3 d2 n(kd2b

D 4,4 nJ n(k S2b)

D4,5 n Yn( s2 b

D4,6 ~kd0 bJn(kd0b)

D4,7 kd3 b n(kd0 b)

0 4,8 =nJ (k3b)

O 4,9 -nY n(k s~3b)

D =-nJ (kb
5,2 n d~2b

D5,3 n (kd2 b)

D A - bJ'(k b)
5,4 s2 n s2

D - Ak bY'(k b)
5,5 s2 n s2

D56= nJ n(k d3b)
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D5,7 a nYn(kd3b)

D5,8  ks3blks3b
)

05,9 - ks3bY'(ks3b)

(2 _ k2 b2'J (k b) 2kdbJik b))

D6 2  1-' ((2n s2 n d2  d2 n d2

92 ((2n2 2 2 )yn(  2k bY (kd b))

063 -3 2 n d2  d2 d2

D 22n(k bJ'(k b) J n(ks2b ))

6,4 A3 s2  n s2

o 6 2n(k s2bY(k s2b) Yn(ks2b ))D6,5 $#3 s 2 n 2

D 2k bJ( )- (2n, k k2 b 2  kb
6,6 s3b n(kd 3b) S3 n)Jn(kd3b)

D 2 - (22  _ k2  2
D6, 2ks 3bY(kd3b) - (2n k 3b2)Y n(kd 3b)

06,8 2n(Jn(ks3b) - ks3bJ'(ks3b))

D6,9 =2n(Yn(ks3b) k s3bY'(ks3b))

07,2 2n(Jn(kd2b) kdZbJ'(kdzb))
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SD7,3 - 2n(Yn(kd2b) - kd2bY'(kd 2b))

D - 2k bJ'(k b) + (k 2 b - 2n2)J (k b)
7,4 s2 n s2 S2 n s2

D -2k bY'(k b) +(k 2b 2_2n 2)y (k b)
7,5 s2 n s2 s2 n s2

I #3

D -- 2n(k bJ'(kd3b) - J(kd3b))7,6 u 2 0 n 0 nd

A3
D0 -- 2n(kd 3bY'(kb) - Y(kd3 b))7,7 - 2 Ad3b0

S 3 (2k bJ'(k b) + (k3b2  2n2 )J (k b))D78s3 n s3 s3 n s3

0 2 A3 (2ks 3bY'(ks3b) + (k23b 2 2n 2)Y(ks3b))

D2 2 a2 )- 2k a' (k a)
8,6= s3 n d3 n d3

D 2 2-k 2 a2 y( )- 2k aY' (k a)
8,7 = (2nn k 3a2)Jn(kd3 ) 0 n d3

D8,8 = 2n(k s3aJ(k a) - Jk(kaa))
8,8 = s3 n s3 n s3

S , 2n(k aYn(k a)- Y (k a))

D p 4 k 2J(k a)8,10 p3 s3 n 4
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D -k a J'(ka
9,6 d3 n d3

D 9 ka Y'(kd a )

9,7 0d3

09,8 - n Jn(ks3a)

D09, 9 -n Yn(ks3a)

D -k aJ'(ka
9,10 4 - (k4a)

D 10,6 - 2n(Jn(kd3a) - kd3aJ'(kd3a))

D 1,7 = 2n(Y n(k0 a) - k 0aY'(kD a))

D0, ' 2ks aJ (ksa) + (k23a 2 _2n 2 )Jn(ksa)
10,7 s n 3 d3 nd3

D0 2k aY'(k a) + (k 2 a - 2n 2)y (ks3a)

10,9 s3 n s3 S3 n s

The A vector has two nonzero elements which are

c2 klC

A . . J(k) and A - J' (k c) (D-40)
1 /2 nkI 2 Wn2 nA

The D matrix has been adjusted by multiplying column I by p1w 2 and column 10 by

P40 2 as suggested by Gaunaurd59 . (The above coefficients were originally derived

by Guanaurd 59 but were rederived for verification. Verification of the coefficients

derived by Flax and Neubauer 5 8 could not be obtained.) Additional scaling has
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been done on the sixth and seventh columns to prevent computational problems.

For the n=0 case, the *2 and $3 potential functions are 0 due to the sine

term. This results in rre always being zero regardless of the constants, which

causes these three boundary conditions to be meaningless. In addition, the conti-

nuity of v displacement is also meaningless. The overall result is to reduce the D

matrix from a 10 x 10 matrix to a 6 x 6 matrix by eliminating rows 3,5,7 and 10 and

columns 4,5,8 and 9.

Elastic Shell Derivation

The solution for the scattered pressure from the purely elastic shell is

obtained from the preceding discussion by eliminating the viscoelastic layer (layer

2) and applying the outer fluid boundary conditions to the elastic layer. The total

pressure in fluid 1 is expressed by equation (D-26). The vector and scalar

potentials for the elastic solid are expressed by equations (D-29) and (D-30). The

total pressure in the interior fluid (fluid 4) is expressed by equation (D-31). The

boundary conditions are:

(i) at r=b,

3 1 3 3
7 r -P u = u 7 = 0rr 1t 'rG

~(iii) at r=a,
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73 a--P u u, U 4 3 0 (D-41)
rr 4'r

A set of six equations in six unknown coefficients results as follows:

D x n-A n(D-42)

where x is a column vector of the unknown coefficients, A nis a col-

umn vector of the nonvanishing elements A Iand A 2, and D is a 6 x 6

matrix with 28 nonzero elements which results from application of the

boundary conditions. The D matrix nonzero coefficients are:

2

DO H I(k c) (0-43)
1,1 n 1

D (2n 2_ k 2b 2)1 (kdb) - 2kd bJ'(kd b)
1,2 S

2_ 2 2 kb

D = 2n k b )Y(d b) - k b kdb
1,3 Q 3 n s

01,4 = 2n(k s3 bJ(ks3 b) - Y n(k s3 b))

D -2nk bY1(k b) -Y( )

2,1 1 n (Ib

D2,2 kd3 b n(kd0b)
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k23  kb Yl(k kb)

2,4 =n Jn(ks3 b)

0 2,5 n f Y n(ks3 b)

D3  = 2n(Jfl(kd b) k kdbJ'(kd b))

133 2n(Y (kd b) k kdbY(kd b))

D 2k bJ' ( 3b) + (k 2 b 2  2n 2 )1(k 3b)

O 2k bY' (k b) + (k 23 b
2 

-2n 
2)y n(ks 3 b)

3,5 s3 n s

3 =(2n 2  k 2 a 2)J (kd a) 2?kd aJ'( kda)

4,2 S3 n d

13 (2n 2 k 2 3a2 )yn (k 0a) -2k 0alY'(k 0a)
4,3 -s3 ndd3n 3

0D 2n(k 3aJ'(k5 a) j (k~3 )

04,5 -2n(ks 3 aYn(ks3 a) n Y(ks3 a))

13 = 4~- k 2 a 2J (k a)

4,6 p3  s3

05, = 2n(kd aJ'(kd a) - i (k 0a))
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D5 3 = -2n(kd3aY'(kd3a) - Y (k3a))

D = 2k aJ'(ka) + (k2 a 2  2n 2)J (ksa))5,4 s3 n s3 s3 n as3
2 2

D , 2k aY'(k 3 a) + (k 2a - 22 )Y (k a))5,5 s3 n s3 S3 n s3

D = ka (k )6,2 d3a Jn(kd3a)

D = ka k6,3 d3a Yn(kd3a)

D6,4 n Jn(ks3a)

D6,5 n n (ks3a)

D6,6 -k4 aJ(k 4 a)

The A vector has two nonzero elements which are

b2  klb
A J(klb) and A = J'(k b) (D-44)

1 A~3 n 1 2 PIW2 n1

As with the layer solution, the D matrix is reduced for the n=0 case (D matrix

reduces to a 4x4 matrix).

The elastic shell code is verified by comparing the theoretical results with the

experimentally obtained form function for the simulated infinite cylindrical shell.

In addition, the theoretical computer results were qualitatively compared with the

theoretical form functions illustrated by Flax and Netibauer 5 8. The viscoelastic
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layer program was verified by: (1) recovering the experimental shell form function

when the viscoelastic layer parameters simulated a lossless water layer, and (2) the

pressure release form function generated in Appendix A was recovered when the

viscoelastic parameters were set to simulate a low loss air layer.

The Bessel functions are generated by the methods indicated in Appendix A.

The accuracy of the Bessel functions were checked against published tables and

other library routines. In addition, the Wronskian values calculated using the

Bessel functions and their derivatives were continually compared against the exact

values for a estimate of solution accuracy. The matrix equations are solved by a

standard IMSL routine (LEQ2C) which utilizes a lower-upper decomposition

method with iterative improvement. All computations were performed using

double precision on a Vax-750 or Micro-Vax computers.
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APPENDIX R

The Treatment of Multiple Reflections in the Panel for
Plane Wave Modulus Exneriment

Due to the large difference in the specific acoustic impedances of the water

and the materials used in the plane wave modulus experiment, significant

reflection will occur at all interfaces. The purpose of the experiment is to

determine the transmission of sound through the material. The reflections of im-

portance are the internal reflections that occur in the material which eventually

add to the directly transmitted pulse but with delayed phase and reduced ampli-

tude. To fully assess the transmission through the panel, these multiple reflections

must be taken into account. For the closed cell rubber materials, the attenuation

in the material is so large that the multiple reflections are significantly reduced and

hence have little or no effect on the direct transmission. The corprene and cork-ni-

trile composites, however, do not have a large enough attenuation to permit

neglect of multiple reflections.

As illustrated is figure E-1, an incident wave contacts the surface (2) and a

portion of the wave is transmitted. At the next interface between the two materials

a portion of the first transmitted wave is transmitted into the medium. The portion

transmitted from the water into the material is related by the transmission
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i, e-1(/

IA/A

KL

Figure E-1 Multiple Internal Reflection in a One-Dimensional Panel
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coefficient TI,2 and the portion transmitted from the material into the water is re-

lated to T2,1 where

2r2  2rI
T a 2 T (E11,2 r + r 2  2,1 r1 + r(E)

and, r I is the specific acoustic impedance of the water and r2 is the specific

acoustic impedance of the panel material. There is also reflection of the sound

wave occurring at the material-water interface with the amount of reflection

determined by the reflection coefficient, R, where

R 2 (E-2)
r1 + r2

The incident wave, P0 , is related to the transmitted wave, Pt, by
,1R£~i/c2e-3aL £,3w/c

Pt P 1 T1,2 T2,1 eaLeL/c +  T1,2T2 e

TIT2,R2 -a 4L eL5WL/c
1,2+ ... (E-3)

The direct transmission can be factored out resulting in
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Pt P P T1,2T2,1 eaLe tL/c 1 + RZ e-a2 Le tw2L/c +

R4 e -a4L e &4L/c } (E-4)

-aL &wL/c 2 2aL tw2L/c

Let TT 1 T e2,1e e and x= R e e ,then

equation (E-3) can be written as

t T (1 + x+ x  + (E-5)
P0

Since x<l, the series sums to I Equation (E-5) becomes

T (E-6)
P0  1 - x

From the experimental setup, the ratio of transmitted pressure

to incident pressure is

Pt Pc exp(t C)
t c c ( &cLP p exp(tow exp c

where *w is the unwrapped phase for the water only, Oct is the un-

wrapped phase with the panel in place, c is the propagation speed ofW
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the water and c is the phase speed of the sample. The ratio of amp-

litudes, A, and phase, 0, is determined directly from the FFT data with

P

A- " +  wL (E-7)P C w c
w w

eL

The -! term is due to a thickness of water, L, being displaced by
w

the panel.

Iteration Process

The equation to be iterated is

T = A exp(tf) (]-x) (E-8)

1. No internal reflections is assumed, i.e. x = 0.

the initial phase speed is c w= 0 L (E-9)

From the initial phase speed, T112 and T2 11 are calculated

and the initial attenuation, a, is determined from

A = T1,2 T2,] exp(-*L). (E-10)

2. From the initial values of c and a, the phase and amplitude

corrections for the multiple internal reflections are cal-

culated.
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Am M l x Om =phase of (I-x)

The phase speed is now

w L
C 

0 +- -

This new phase speed is used to calculate T1, 2 and T2,1 .

The new attenuation, a, is determined from

A Am a T1,2 T2,1 exp(-aL). (E-

Additional iteration are performed by repeated performance of step

Convergence is usually rapid however, the pulses do not always occur f(

frequencies less than 15kHz. The nonconvergence is suspected to result from di.

fraction effects or some unaccounted motion of the panel causing the one dimen

sional transmission line analysis to be invalid.
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